SE COMPUTER (2019 PATTERN)		DATA STRUCTURE AND ALGORITH	
	Mumbai Education Tru ITUTE OF ENGINEER MPUTER ENGINEERING D	ING, NASHIK.	
Subject : DSA	<u>ASSIGNMENT NO – 04</u>	Unit - IV	
1. Explain the Sym l	bol Table in details.		
2. Demonstrate Del	etion Operation in AVL with exam	iple.	
3. Explain following	g terms w.r.t. height balance tree L	L, RR, LR, RL.	
4. Construct an AV	L Tree by inserting numbers from	1 to 8.	
5. Define Red Blac	k tree . List its properties. Give exan	nple of it.	
6. Write functions	for RR and RL rotation with respo	ect to AVL tree.	
7. Explain the follow	wing :		

- (i) Static and dynamic tree tables with suitable example.
- (ii) Dynamic programming with principle of optimality.
- 8. Explain the following trees using suitable example :
 - (i) Red-black tree
 - (ii) Splay tree
 - (iii) K-dimensional tree
 - (iv) AA Tree
- 9. Construct an AVL Tree for following data :
 - a. 50, 25, 10, 5, 7, 3, 30, 20, 8, 15
 - b. 1, 2, 3, 4, 8, 7, 6, 5, 11, 10
 - c. MAR, MAY, NOV, AUG, APR, JAN, DEC, JULY
- 10. What is OBST in data structure? and what are advantages of OBST?
- 11. What is OBST? List binary search tree with 3 words (w1, w2, w3) = (do, if,stop) words occurs with probabilities (P1, P2, p3) = (0.4,0.5,0.1) find expected access time in each case.
- 12. Build AVL tree for given sequence of data. Show balance factor of all nodes and name the rotation used for balancing the tree 40,60,80,50,45,47,44,42,75,46,41.

13. Construct the **AVL tree** for the following data by inserting each of the following data item one at a time :

Example-1 : 10, 20, 15, 12, 25, 30, 14, 22, 35, 40

Example-2: 30, 50, 110, 80, 40, 10, 120, 60, 20, 70, 100, 90

- 14. Write a pseudo **C/C++ code for LR and RL rotation** in AVL Tree.
- 15. Difference between AVL Vs RBT tree.
- Construct OBST for given data using dynamic programming approach.
 Explain stepwise.

				4.7
Index	0	1	2	. .
Data	10	20	30 ×	<u>9</u> 40
Frequency	4	2	్రి	3

17. Find the Optimal Binary Search Tree for the :

Identifier set $\{a1, a2, a3\} = \{do, if, while\}$

Where n = 3 and Probabilities of successful search as $\{p1, p2, p3\} = \{0.5, 0.1, p3\} = \{0.5, 0.1, p3\}$

(0.05) and Probability of unsuccessful search as $\{q0, q1, q2, q3\} = \{0.15, 0.1, 0.05, 0.05\}$