
“SEARCH TREE”

Prepared By

Prof. Anand N. Gharu
(Assistant Professor)

 Computer Dept.

15 March 2024

.

CLASS : SE COMPUTER 2019

SUBJECT : DSA (SEM-II)

UNIT : IV

Note: The material to prepare this presentation has been taken from internet and are generated only

for students reference and not for commercial use. 1

SYLLABUS

Symbol Table-Representation of Symbol Tables- Static

tree table and Dynamic tree table, Weight balanced

tree - Optimal Binary Search Tree (OBST), OBST as

an example of Dynamic Programming, Height

Balanced Tree- AVL tree. Red-Black Tree, AA tree,

K-dimensional tree, Splay Tree

UNIT-IV

SEARCH

TREE

SYMBOL TABLE

SYMBOL TABLE MEANS

3/17/2019 PROF. ANAND GHARU

Symbol tables are data structures that are used

by compilers to hold information about source-

program constructs.

A symbol table is a necessary component because

 Declaration of identifiers appears once in a

program

 Use of identifiers may appear in many places of
the program text

5

Skeletal Source Program

Preprocessor

PHASES OF COMPILER

3/17/2019 PROF. ANAND GHARU

Linker

Assembler

Compiler

6

Example : https://youtu.be/P1bQUyl__t0

https://youtu.be/P1bQUyl__t0

IN FORMATION PROVIDED BY
SYMBOL TABLE

3/17/2019 PROF. ANAND GHARU

 Given an Identifier which name is it?

 What information is to be associated with a

name?

 How do we access this information?

7

Variable and labels

Parameter

Constant

SYMBOL TABLE NAMES

3/17/2019 PROF. ANAND GHARU

NAME Recor

d
RecordField

Procedure

Array and files

8

WHO CREATES SYMBOL

TABLE ?

3/17/2019 PROF. ANAND GHARU

identifiers and attributes are entered by the analysis

phases when processing a definition (declaration) of an

identifier

 In simple languages with only global variables and implicit

declarations:

The scanner can enter an identifier into a symbol table if

 it is not already there

 In block-structured languages with scopes and explicit

declarations:

 The parser and/or semantic analyzer enter identifiers

and corresponding attributes 9

• Symbol table information is used by the analysis

 and synthesis phases

• To verify that used identifiers have been

 defined (declared)

USE OF SYMBOL TABLE

3/17/2019 PROF. ANAND GHARU

assignments

 ar

e

• To verify that expressions

 and semantically correct – type

checking

• To generate intermediate or target code

10

Symbol Table Management

3/17/2019 PROF. ANAND GHARU

“Symbol table is an important data structure used in a
compiler”

Symbol table is used to store the information about the
occurrence of various entities such as objects, classes,
variable name, interface, function name etc. it is used by
both the analysis and synthesis phases.

The symbol table used for following purposes:

1. It is used to store the name of all entities in a structured

form at one place.
2. It is used to verify if a variable has been declared.
3. It is used to determine the scope of a name.
4. It is used to implement type checking by verifying

assignments and expressions in the source code are
semantically correct.

SYMBOL TABLE

A symbol table can either be linear or a hash table.

Using the following format, it maintains the entry

for each name.

<symbol name, type, attribute>

For example, suppose a variable store the

information about the following variable

declaration:

static int salary

SYMBOL TABLE

Implementation :

The symbol table can be implemented in the

unordered list if the compiler is used to handle the

small amount of data.

A symbol table can be implemented in one of the

following techniques:

1. Linear (sorted or unsorted) list

2. Hash table

3. Binary search tree

Symbol table are mostly implemented as hash

table.

SYMBOL TABLE

OPERATION OF SYMBOL TABLE :

1. Insert ()

• Insert () operation is more frequently used in the

analysis phase when the tokens are identified and

names are stored in the table.

• The insert() operation is used to insert the

information in the symbol table like the unique

name occurring in the source code.

SYMBOL TABLE

OPERATION OF SYMBOL TABLE :
1. Insert ()

• In the source code, the attribute for a symbol is the

information associated with that symbol. The information

contains the state, value, type and scope about the

symbol.

• The insert () function takes the symbol and its value in

the form of argument.

For example:

int x

insert (x, int)

SYMBOL TABLE

OPERATION OF SYMBOL TABLE :
lookup()
In the symbol table, lookup() operation is used to
search a name. It is used to determine:

• The existence of symbol in the table.
• The declaration of the symbol before it is used.
• Check whether the name is used in the scope.
• Initialization of the symbol.
• Checking whether the name is declared multiple

times.
The basic format of lookup() function is as follows:
lookup (symbol)

SYMBOL TABLE

Data structure for symbol table

A compiler contains two type of symbol table:

global symbol table and scope symbol table.

Global symbol table can be accessed by all the

procedures and scope symbol table.

The scope of a name and symbol table is arranged

in the hierarchy structure as shown below:

Classification of Symbol Table

int value=10;

void sum_num()
 {
 int num_1;
 int num_2;

 {
 int num_3;
 int num_4;
 }

 int num_5;

 {
 int_num 6;
 int_num 7;
 }
 }

Classification of Symbol Table
Void sum_id

 {

 int id_1;

 int id_2;

 {

 int id_3;

 int id_4;

 }

 int num_5;

 } :

Classification of Symbol Table
The above grammar can be represented in a hierarchical data structure of symbol
tables:

Classification of Symbol Table
The global symbol table contains one global variable and two

procedure names. The name mentioned in the sum_num table is not

available for sum_id and its child tables.

Data structure hierarchy of symbol table is stored in the semantic

analyzer. If you want to search the name in the symbol table then

you can search it using the following algorithm:

• First a symbol is searched in the current symbol table.

• If the name is found then search is completed else the name will

be searched in the symbol table of parent until,

• The name is found or global symbol is searched

Advantages of Symbol Table
1. To store the names of all entities in a structured form at one

place.

2. To verify if a variable has been declared.

3. To implement type checking, by verifying assignments and

expressions in the source code are semantically correct.

4. To determine the scope of a name (scope resolution).

Types of Symbol Table
Data structures can be two types :

1. Static Tree table

2. Dynamic tree table

1. Static Tree Table :

In Static data structure the size of the structure is fixed. The content

of the data structure can be modified but without changing the

memory space allocated to it.

Example of Static tree tables are OBST, Huffman’s Coding

Types of Symbol Table
2. Dynamic tree table :

In Dynamic data structure the size of the structure in not fixed and

can be modified during the operations performed on it. Dynamic

data structures are designed to facilitate change of data structures in

the run time.

Example of Dynamic tree table are an AVL Tree

The definition of dynamic programming says that it is a

technique for solving a complex problem by first breaking

into a collection of simpler subproblems, solving each

subproblem just once, and then storing their solutions to avoid

repetitive computations.

Dynamic Programming

Dynamic Programming is mainly an optimization over plain

recursion. Wherever we see a recursive solution that has repeated

calls for same inputs, we can optimize it using Dynamic

Programming. The idea is to simply store the results of

subproblems, so that we do not have to re-compute them when

needed later. This simple optimization reduces time complexities

from exponential to polynomial. For example, if we write simple

recursive solution for Fibonacci Numbers, we get exponential time

complexity and if we optimize it by storing solutions of

subproblems, time complexity reduces to linear.

Dynamic Programming

Dynamic Programming

Dynamic Programming

1. A weight-balanced binary tree is a binary tree which is

balanced based on knowledge of the probabilities of

searching for each individual node.

2. Within each subtree, the node with the highest weight

appears at the root.

3. This can result in more efficient searching performance.

Weight Balance Tree

In the diagram to the right, the letters represent node values and the numbers represent

node weights. Values are used to order the tree, as in a general binary search tree. The

weight may be thought of as a probability or activity count associated with the node. In

the diagram, the root is G because its weight is the greatest in the tree. The left subtree

begins with A because, out of all nodes with values that come before G, A has the highest

weight. Similarly, N is the highest-weighted node that comes after G

Weight Balance Tree

• As we know that in binary search tree, the nodes in the left

subtree have lesser value than the root node and the nodes in the

right subtree have greater value than the root node.

• We know the key values of each node in the tree, and we also

know the frequencies of each node in terms of searching means

how much time is required to search a node.

• The frequency and key-value determine the overall cost of

searching a node. The cost of searching is a very important factor

in various applications.

Optimal Binary Search Tree

• The overall cost of searching a node should be less.

• The time required to search a node in BST is more than the

balanced binary search tree as a balanced binary search tree

contains a lesser number of levels than the BST.

• There is one way that can reduce the cost of a binary

search tree is known as an optimal binary search

tree.(OBST)

Optimal Binary Search Tree

Optimal Binary Search Tree

Optimal Binary Search Tree

Optimal Binary Search Tree

• Given: k1<k2<k3<k4<k5

Tree 1:

k2/[k1,k4]/[nil,nil],[k3,k5]

cost = 0(0.20) + 1(0.25+0.20) +2(0.05+0.30) + 1 = 1.15 + 1

Tree 2:

k2/[k1,k5]/[nil,nil],[k4,nil]/[nil,nil],[nil,nil],[k3,nil],[nil,nil]

cost = 0(0.20) + 1(0.25+0.30) +2(0.20) + 3(0.05) + 1 = 1.10 + 1

Notice that a deeper tree has expected lower cost

Optimal Binary Search Tree

Optimal BST T must have subtree T′ for keys ki…kj which is optimal for those keys

Cut and paste proof: if T′ not optimal, improving it will improve T, a contradiction

Algorithm for finding optimal tree for sorted, distinct keys ki…kj:

For each possible root kr for i≤r≤j

Make optimal subtree for ki,…,kr−1

Make optimal subtree for kr+1,…,kj

Select root that gives best total tree

Formula: e(i,j) = expected number of comparisons for optimal tree for keys ki…kj

e(i,j)={0, if i=j+1mini≤r≤j{e(i,r−1)+e(r+1,j)+w(i,j)}, if i≤j

where w(i,j)=∑k=ijpi is the increase in cost if ki…kj is a subtree of a node

Work bottom up and remember solution

General formula for calculating the minimum cost is:

C[i,j] = min{c[i, k-1] + c[k,j]} + w(i,j)

Optimal Binary Search Tree

Optimal Binary Search Tree

https://www.javatpoint.com/optimal-binary-search-tree

https://www.javatpoint.com/optimal-binary-search-tree
https://www.javatpoint.com/optimal-binary-search-tree
https://www.javatpoint.com/optimal-binary-search-tree
https://www.javatpoint.com/optimal-binary-search-tree
https://www.javatpoint.com/optimal-binary-search-tree
https://www.javatpoint.com/optimal-binary-search-tree
https://www.javatpoint.com/optimal-binary-search-tree

Optimal Binary Search Tree

Optimal Binary Search Tree

Optimal Binary Search Tree

Example OBST : https://youtu.be/vLS-zRCHo-Y

https://youtu.be/vLS-zRCHo-Y
https://youtu.be/vLS-zRCHo-Y
https://youtu.be/vLS-zRCHo-Y
https://youtu.be/vLS-zRCHo-Y
https://youtu.be/vLS-zRCHo-Y

Optimal Binary Search Tree

Optimal Binary Search Tree

Optimal Binary Search Trees(OBST)

Formula:-

1) w(i,i)=q(i)

2) c(i,i)=0

3) r(i,i)=0

4) w(i,j)=p(j)+q(j)+w(i,j-1)

5) C(i,j)= min {c(i,k-1)+c(k,j)}+w(i,j) ….. i<k<=j

6) r(i,j)=k

7) r(i,i+1)=i+1

OBST Example

OBST Example

Solution:-

This computation is carried out row-wise from row 0 to row 4. Initially, W (i,

i) = Q

(i) and C (i, i) = 0 and R (i, i) = 0, 0 < i < 4.

Start with i = 0; so j = 1; as i < k ≤ j, so the possible value for k = 1

W (0, 1) = P (1) + Q (1) + W (0, 0) = 3 + 3 + 2 = 8

C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} = 8

R (0, 1) = 1 (value of 'K' that is minimum in the above equation).

Next with i = 1; so j = 2; as i < k ≤ j, so the possible value for k = 2

W (1, 2) = P (2) + Q (2) + W (1, 1) = 3 + 1 + 3 = 7

C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} = 7

R (1, 2) = 2

Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k = 3

W (2, 3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 = 3

C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] = 3

R (2, 3) = 3

Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k = 4

W (3, 4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 = 3

C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] = 3

R (3, 4) = 4

Start with i = 0; so j = 2; as i < k ≤ J, so the possible values for k = 1 and 2.

W (0, 2) = P (2) + Q (2) + W (0, 1) = 3 + 1 + 8 = 12

C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2, 2))}

= 12 + min {(0 + 7, 8 + 0)} = 19

R (0, 2) = 1

Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and 3.

W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 7 = 9

C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3, 3)]}

= W (1, 3) + min {(0 + 3), (7 + 0)} = 9 + 3 = 12

R (1, 3) = 2

Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4.

W (2, 4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 = 5

C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4, 4)]

= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 = 8

R (2, 4) = 3

Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2 and 3.

W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 = 14

C (0, 3) = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2, 3)],[C (0, 2) + C (3, 3)]}

= 14 + min {(0 + 12), (8 + 3), (19 + 0)} = 14 + 11 = 25

R (0, 3) = 2

Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and 4.

W (1, 4) = P (4) + Q (4) + W (1, 3) = 1 + 1 + 9 = 11

C (1, 4) = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3, 4)],[C (1, 3) + C (4, 4)]}

= 11 + min {(0 + 8), (7 + 3), (12 + 0)} = 11 + 8 = 19

R (1, 4) = 2

Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2, 3 and 4.

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 = 16

C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2, 4)],[C (0, 2) + C (3, 4)], [C (0, 3) + C (4, 4)]}

= 16 + min [0 + 19, 8 + 8, 19+3, 25+0] = 16 + 16 = 32

R (0, 4) = 2

AVL Tree
• An AVL tree is a type of tree that is a self-balancing

binary search tree.

• Properties

• Follows all properties of the tree data structure.

• Self-balancing.

• Each node stores a value called a balanced factor, which is

the difference in the height of the left sub-tree and right

sub-tree.

• All the nodes in the AVL tree must have a balance factor of

-1, 0, and

AVL Tree
AVL Tree is invented by GM Adelson - Velsky and EM Landis in 1962.

The tree is named AVL in honour of its inventors.

AVL Tree can be defined as height balanced binary search tree in which

each node is associated with a balance factor which is calculated by

subtracting the height of its right sub-tree from that of its left sub-tree.

Tree is said to be balanced if balance factor of each node is in between -1

to 1, otherwise, the tree will be unbalanced and need to be balanced.

Balance Factor (k) = height (left(k)) - height (right(k))

AVL Tree
Balance Factor (k) = height (left(k)) - height (right(k))

Operations of AVL Tree
S
N

Operation Description

1 Insertion Insertion in AVL tree is performed in the same way
as it is performed in a binary search tree. However,
it may lead to violation in the AVL tree property and
therefore the tree may need balancing. The tree can
be balanced by applying rotations.

2 Deletion Deletion can also be performed in the same way as
it is performed in a binary search tree. Deletion may
also disturb the balance of the tree therefore, various
types of rotations are used to rebalance the tree.

https://www.javatpoint.com/insertion-in-avl-tree
https://www.javatpoint.com/deletion-in-avl-tree

AVL Rotation
We perform rotation in AVL tree only in case if Balance Factor is other

than -1, 0, and 1. There are basically four types of rotations which are as

follows:

1. LL rotation: Inserted node is in the left subtree of left subtree of A

2. RR rotation : Inserted node is in the right subtree of right subtree of A

3. LR rotation : Inserted node is in the right subtree of left subtree of A

4. RL rotation : Inserted node is in the left subtree of right subtree of A

Where node A is the node whose balance Factor is other than -1, 0, 1.

The first two rotations LL and RR are single rotations and the next two

rotations LR and RL are double rotations. For a tree to be unbalanced,

minimum height must be at least 2, Let us understand each rotation

AVL Rotation
1. RR Rotation :

When BST becomes unbalanced, due to a node is inserted into the right

subtree of the right subtree of A, then we perform RR rotation, RR

rotation is an anticlockwise rotation, which is applied on the edge below a

node having balance factor -2

In above example, node A has balance factor -2 because a node C is inserted

in the right subtree of A right subtree. We perform the RR rotation on the

edge below A.

AVL Rotation
2. LL Rotation :

When BST becomes unbalanced, due to a node is inserted into the left

subtree of the left subtree of C, then we perform LL rotation, LL rotation

is clockwise rotation, which is applied on the edge below a node having

balance factor 2

In above example, node C has balance factor 2 because a node A is inserted

in the left subtree of C left subtree. We perform the LL rotation on the edge

below A.

AVL Rotation
3. LR Rotation :

Double rotations are bit tougher than single rotation which has already

explained above. LR rotation = RR rotation + LL rotation, i.e., first RR

rotation is performed on subtree and then LL rotation is performed on full

tree, by full tree we mean the first node from the path of inserted node

whose balance factor is other than -1, 0, or 1.

AVL Rotation
3. LR Rotation :

State Action

A node B has been inserted into the right subtree of A the left
subtree of C, because of which C has become an unbalanced node
having balance factor 2. This case is L R rotation where: Inserted
node is in the right subtree of left subtree of C

As LR rotation = RR + LL rotation, hence RR (anticlockwise) on
subtree rooted at A is performed first. By doing RR rotation,
node A, has become the left subtree of B.

After performing RR rotation, node C is still unbalanced, i.e.,
having balance factor 2, as inserted node A is in the left of left of C

Now we perform LL clockwise rotation on full tree, i.e. on node C.
node C has now become the right subtree of node B, A is left
subtree of B

Balance factor of each node is now either -1, 0, or 1, i.e. BST is
balanced now.

AVL Rotation
4. RL Rotation :

State Action

A node B has been inserted into the left subtree of C the right
subtree of A, because of which A has become an unbalanced node
having balance factor - 2. This case is RL rotation where: Inserted
node is in the left subtree of right subtree of A

As RL rotation = LL rotation + RR rotation, hence, LL (clockwise)
on subtree rooted at C is performed first. By doing RR rotation,
node C has become the right subtree of B.

After performing LL rotation, node A is still unbalanced, i.e.
having balance factor -2, which is because of the right-subtree of
the right-subtree node A.

Now we perform RR rotation (anticlockwise rotation) on full tree,
i.e. on node A. node C has now become the right subtree of node
B, and node A has become the left subtree of B.

Balance factor of each node is now either -1, 0, or 1, i.e., BST is
balanced now.

AVL Tree Example
Q: Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

1. Insert H, I, J

AVL Tree Example
Q: Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

2. Insert B, A

AVL Tree Example
Q: Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

3. Insert E 3 a) We first perform RR rotation on node B

AVL Tree Example
Q: Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

3b) We first perform LL rotation on the node I

The resultant balanced tree after LL rotation is:

AVL Tree Example
Q: Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

4. Insert C, F, D 4a) We first perform LL rotation on node E

The resultant tree after LL rotation is:

AVL Tree Example
Q: Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

4. Insert C, F, D 4b) We then perform RR rotation on node B

The resultant balanced tree after RR rotation is:

AVL Tree Example
Q: Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

5. Insert G 5 a) We first perform RR rotation on node C

The resultant tree after RR rotation is:

AVL Tree Example
Q: Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

5. Insert G 5 b) We then perform LL rotation on node H

The resultant balanced tree after LL rotation is:

AVL Tree Example
Q: Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

6. Insert K

AVL Tree Example
Q: Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

7. Insert L

AVL Tree Example

AVL Tree Example

AVL Tree Example

AVL Tree Example

Red-Black tree is a self-balancing binary search tree in

which each node contains an extra bit for denoting the

color of the node, either red or black.

A red-black tree satisfies the following properties:

1. Red/Black Property: Every node is colored, either

red or black.

2. Root Property: The root is black.

3. Leaf Property: Every leaf (NIL) is black.

Red Black Tree

4. Red Property: If a red node has children then,

the children are always black.

5. Depth Property: For each node, any simple

path from this node to any of its descendant leaf

has the same black-depth (the number of black

nodes).

Red Black Tree

Rules That Every Red-Black Tree Follows:

1. Every node has a colour either red or black.

2. The root of the tree is always black.

3. There are no two adjacent red nodes (A red node

cannot have a red parent or red child).

4. Every path from a node (including root) to any of its

descendants NULL nodes has the same number of

black nodes.

5. All leaf nodes are black nodes.

Red Black Tree

An example of a red-black tree is:

Red Black Tree

Each node has the following attributes:

1. color

2. key

3. leftChild

4. rightChild

5. parent (except root node)

 In AVL tree insertion, we used rotation as a tool to do balancing after

insertion. In the Red-Black tree, we use two tools to do the balancing.

1. Recoloring

2. Rotation

Recolouring is the change in colour of the node i.e. if it is red then

change it to black and vice versa. It must be noted that the colour of the

NULL node is always black. Moreover, we always try recolouring first, if

recolouring doesn’t work, then we go for rotation. Following is a detailed

algorithm. The algorithms have mainly two cases depending upon the

colour of the uncle. If the uncle is red, we do recolour. If the uncle is

black, we do rotations and/or recolouring.

Red Black Tree Operations

The representation we will be working with is :

Red Black Tree Operations

Logic:

First, you have to insert the node similarly to that in a binary tree and

assign a red colour to it. Now, if the node is a root node then change

its colour to black, but if it is not then check the colour of the parent

node. If its colour is black then don’t change the colour but if it is not

i.e. it is red then check the colour of the node’s uncle. If the node’s

uncle has a red colour then change the colour of the node’s parent

and uncle to black and that of grandfather to red colour and repeat

the same process for him (i.e. grandfather).

Red Black Tree Operations

Red Black Tree Operations

But, if the node’s uncle has black colour then there are 4 possible cases:

Red Black Tree Operations
Left Left Case (LL rotation):

Red Black Tree Operations
Left Right Case (LR rotation):

Red Black Tree Operations
Right to Right Case (RR rotation):

Red Black Tree Operations
Right Left Case (RL rotation):

Now, after these rotations, if the colours of the nodes are miss matching then recolour

them.

Algorithm:

Let x be the newly inserted node.

Perform standard BST insertion and make the colour of newly inserted nodes as RED.

If x is the root, change the colour of x as BLACK (Black height of complete tree increases by

1).

Do the following if the color of x’s parent is not BLACK and x is not the root.

a) If x’s uncle is RED (Grandparent must have been black from property 4)

(i) Change the colour of parent and uncle as BLACK.

(ii) Colour of a grandparent as RED.

(iii) Change x = x’s grandparent, repeat steps 2 and 3 for new x.

b) If x’s uncle is BLACK, then there can be four configurations for x, x’s parent (p) and x’s

grandparent (g) (This is similar to AVL Tree)

(i) Left Left Case (p is left child of g and x is left child of p)

(ii) Left Right Case (p is left child of g and x is the right child of p)

(iii) Right Right Case (Mirror of case i)

(iv) Right Left Case (Mirror of case ii)

ALGORITHMS OF RBT

1. Most of the self-balancing BST library functions

like map and set in C++ (OR TreeSet and TreeMap

in Java) use Red-Black Tree.

2. It is used to implement CPU Scheduling Linux.

Completely Fair Scheduler uses it.

3. Besides they are used in the K-mean clustering

algorithm for reducing time complexity.

4. Moreover, MySQL also uses the Red-Black tree for

indexes on tables.

APPLICATION OF RBT

Example: Creating a red-black tree with elements 3, 21, 32 and 15 in an

empty tree.

:

EXAMPLE OF RBT

When the first element is inserted it is inserted as a root node and as root node

has black colour so it acquires the colour black.

The new element is always inserted with a red colour and as 21 > 3 so it becomes

the part of the right subtree of the root node.

Example: Creating a red-black tree with elements 3, 21, 32 and 15 in an

empty tree.

:

EXAMPLE OF RBT

Now, as we insert 32 we see there is a red father-child pair which violates the Red-

Black tree rule so we have to rotate it. Moreover, we see the conditions of RR rotation

(considering the null node of the root node as black) so after rotation as the root node

can’t be Red so we have to perform recolouring in the tree resulting in the tree shown

above.

Example: Creating a red-black tree with elements 3, 21, 32 and 15 in an

empty tree.

:

EXAMPLE OF RBT

FINAL TREE :

Insertion in Red Black tree :

The following are some rules used to create the Red-Black tree:

1. If the tree is empty, then we create a new node as a root node with the color

black.

2. If the tree is not empty, then we create a new node as a leaf node with a color

red.

3. If the parent of a new node is black, then exit.

4. If the parent of a new node is Red, then we have to check the color of the

parent's sibling of a new node.

4a) If the color is Black, then we perform rotations and recoloring.

4b) If the color is Red then we recolor the node. We will also check whether the

parents' parent of a new node is the root node or not; if it is not a root node, we will

recolor and recheck the node

http://www.btechsmartclass.com/data_structures/red-black-trees.html

EXAMPLE OF RBT

http://www.btechsmartclass.com/data_structures/red-black-trees.html
http://www.btechsmartclass.com/data_structures/red-black-trees.html
http://www.btechsmartclass.com/data_structures/red-black-trees.html
http://www.btechsmartclass.com/data_structures/red-black-trees.html
http://www.btechsmartclass.com/data_structures/red-black-trees.html
http://www.btechsmartclass.com/data_structures/red-black-trees.html
http://www.btechsmartclass.com/data_structures/red-black-trees.html
http://www.btechsmartclass.com/data_structures/red-black-trees.html
http://www.btechsmartclass.com/data_structures/red-black-trees.html
http://www.btechsmartclass.com/data_structures/red-black-trees.html
http://www.btechsmartclass.com/data_structures/red-black-trees.html
http://www.btechsmartclass.com/data_structures/red-black-trees.html
http://www.btechsmartclass.com/data_structures/red-black-trees.html

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

Step 1: Initially, the tree is empty, so we create a new node having value 10. This is

the first node of the tree, so it would be the root node of the tree. As we already

discussed, that root node must be black in color, which is shown below:

Step 2: The next node is 18. As 18 is greater than 10 so it will come at the right of 10

as shown below.

We know the second rule of the Red Black tree that if the tree is not empty then the newly

created node will have the Red color. Therefore, node 18 has a Red color, as shown in the

below figure:

Now we verify the third rule of the Red-Black tree, i.e., the parent of the new node is black

or not. In the above figure, the parent of the node is black in color; therefore, it is a Red-

Black tree.

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

Step 3: Now, we create the new node having value 7 with Red color. As 7 is less than

10, so it will come at the left of 10 as shown below

Now we verify the third rule of the Red-Black tree, i.e., the parent of the new node is

black or not. As we can observe, the parent of the node 7 is black in color, and it obeys

the Red-Black tree's properties..

Step 4: The next element is 15, and 15 is greater than 10, but less than 18, so the new

node will be created at the left of node 18. The node 15 would be Red in color as the

tree is not empty.

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

The above tree violates the property of the Red-Black tree as it has Red-red parent-

child relationship. Now we have to apply some rule to make a Red-Black tree. The

rule 4 says that if the new node's parent is Red, then we have to check the color of the

parent's sibling of a new node. The new node is node 15; the parent of the new node is

node 18 and the sibling of the parent node is node 7. As the color of the parent's

sibling is Red in color, so we apply the rule 4a. The rule 4a says that we have to

recolor both the parent and parent's sibling node. So, both the nodes, i.e., 7 and 18,

would be recolored as shown in the below figure.

We also have to check whether the parent's parent of the new node is the root node or

not. As we can observe in the above figure, the parent's parent of a new node is the

root node, so we do not need to recolor it.

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

Step 5: The next element is 16. As 16 is greater than 10 but less than 18 and greater

than 15, so node 16 will come at the right of node 15. The tree is not empty; node 16

would be Red in color, as shown in the below figure:

In this, it violates the property of the parent-child

relationship as it has a red-red parent-child relationship.

We have to apply some rules to make a Red-Black tree.

Since the new node's parent is Red color, and the parent

of the new node has no sibling, so rule 4a will be

applied. The rule 4a says that some rotations and

recoloring would be performed on the tree.

Since node 16 is right of node 15 and the parent of node 15

is node 18. Node 15 is the left of node 18. Here we have an

LR relationship, so we require to perform two rotations.

First, we will perform left, and then we will perform the

right rotation. The left rotation would be performed on nodes

15 and 16, where node 16 will move upward, and node 15

will move downward. Once the left rotation is performed,

the tree looks like as shown in the below figure:

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

In the above figure, we can observe that there is an LL

relationship. The above tree has a Red-red conflict, so

we perform the right rotation. When we perform the

right rotation, the median element would be the root

node. Once the right rotation is performed, node 16

would become the root node, and nodes 15 and 18

would be the left child and right child, respectively, as

shown in the below figure.

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

After rotation, node 16 and node 18 would be recolored; the color of node

16 is red, so it will change to black, and the color of node 18 is black, so it

will change to a red color as shown in the below figure:

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

Step 6: The next element is 30. Node 30 is inserted at the right of node 18.

As the tree is not empty, so the color of node 30 would be red.

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

The color of the parent and parent's sibling of a new node is Red, so rule 4b

is applied. In rule 4b, we have to do only recoloring, i.e., no rotations are

required. The color of both the parent (node 18) and parent's sibling (node

15) would become black, as shown in the below image..

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

We also have to check the parent's parent of the new node, whether it is a

root node or not. The parent's parent of the new node, i.e., node 30 is node

16 and node 16 is not a root node, so we will recolor the node 16 and

changes to the Red color. The parent of node 16 is node 10, and it is not in

Red color, so there is no Red-red conflict.

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

Step 7: The next element is 25, which we have to insert in a tree. Since 25 is

greater than 10, 16, 18 but less than 30; so, it will come at the left of node

30. As the tree is not empty, node 25 would be in Red color. Here Red-red

conflict occurs as the parent of the newly created is Red color.

Since there is no parent's sibling, so rule 4a is applied in which rotation, as

well as recoloring, are performed. First, we will perform rotations. As the

newly created node is at the left of its parent and the parent node is at the

right of its parent, so the RL relationship is formed. Firstly, the right

rotation is performed in which node 25 goes upwards, whereas node 30

goes downwards, as shown in the below figure.

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

sads

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

After the first rotation, there is an RR relationship, so left rotation is performed. After

right rotation, the median element, i.e., 25 would be the root node; node 30 would be

at the right of 25 and node 18 would be at the left of node 25.

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

Now recoloring would be performed on nodes 25 and 18; node 25 becomes black in

color, and node 18 becomes red in color.

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

Step 8: The next element is 40. Since 40 is greater than 10, 16, 18, 25, and 30, so node

40 will come at the right of node 30. As the tree is not empty, node 40 would be Red in

color. There is a Red-red conflict between nodes 40 and 30, so rule 4b will be applied.

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

As the color of parent and parent's sibling node of a new node is Red so recoloring

would be performed. The color of both the nodes would become black, as shown in the

below image.

After recoloring, we also have to check the parent's parent of a new node, i.e., 25,

which is not a root node, so recoloring would be performed, and the color of node 25

changes to Red.

After recoloring, red-red conflict occurs between nodes 25 and 16. Now node 25

would be considered as the new node. Since the parent of node 25 is red in color, and

the parent's sibling is black in color, rule 4a would be applied. Since 25 is at the right

of the node 16 and 16 is at the right of its parent, so there is an RR relationship. In the

RR relationship, left rotation is performed. After left rotation, the median element 16

would be the root node, as shown in the below figure

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

As the color of parent and parent's sibling node of a new node is Red so recoloring

would be performed. The color of both the nodes would become black, as shown in the

below image.

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

After rotation, recoloring is performed on nodes 16 and 10. The color of node 10 and

node 16 changes to Red and Black, respectively as shown in the below figure

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

Step 9: The next element is 60. Since 60 is greater than 16, 25, 30, and 40, so node 60

will come at the right of node 40. As the tree is not empty, the color of node 60 would

be Red.

As we can observe in the above tree that there is a Red-red conflict occurs. The parent

node is Red in color, and there is no parent's sibling exists in the tree, so rule 4a would

be applied. The first rotation would be performed. The RR relationship exists between

the nodes, so left rotation would be performed.

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

When left rotation is performed, node 40 will come upwards, and node 30 will come

downwards, as shown in the below figure:

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Let's understand the insertion in the Red-Black tree.

10, 18, 7, 15, 16, 30, 25, 40, 60 https://www.javatpoint.com/red-black-tree

EXAMPLE OF RBT

After rotation, the recoloring is performed on nodes 30 and 40. The color of node 30

would become Red, while the color of node 40 would become black.

https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

AVL Vs Red Black Tree

AA TREE
AA trees were introduced by Arne Andersson in 1993 and hence the name

AA. They are a type of balanced binary search trees. It was developed as a

simpler alternative to red black trees.

It eliminates many of the conditions that need to be considered to maintain a

red-black tree.

To understand AA trees, it is important to have a clear understanding of the

concepts of a red black tree.

The tree below is an example of a red-black tree:

AA TREE
The tree below is an example of a red-black tree:

https://iq.opengenus.org/aa-trees/

https://iq.opengenus.org/aa-trees/
https://iq.opengenus.org/aa-trees/
https://iq.opengenus.org/aa-trees/

AA TREE
Unlike in red-black trees, red nodes on an AA tree can only be added as a

right sub-child i.e. no red node can be a left sub-child. The tree below is an

AA tree.

AA TREE
We can see from the above example that there are no left red children.

For the maintenance of a red-black tree, we need to consider seven different

shapes to properly balance the tree:

A level of a node is the number of left links to a NULL reference.

AA trees make use of the concept of levels to aid in the balancing of trees.

The level of a node is used for the balancing of the tree instead of using the

color.

A K-Dimensional Tree (also known as K-D Tree) is

a space-partitioning data structure for organizing

points in a K-Dimensional space. This data

structure acts similar to a binary search tree with

each node representing data in the multi

dimensional space.

KD TREE

Why use KD Tree?

The K-Dimensional Tree was first developed in 1975 by

Jon Bentley. The purpose of the tree was to store spatial

data with the goal of accomplishing:

Nearest neighbor search.

Range queries.

Fast look-up.

K-D Trees are capable of guaranteeing a Log2(n) depth,

where n is the number of points in the set.

KD TREE

Why use KD Tree?

Since this data structure takes place in a multi-

dimensional space, this data structure is incredibly

useful right now. Some modern applications of a K-D

Tree could range from astrophysical simulation to

computer graphics to even data compression. Thanks to

being similar in performance to a Binary Search Tree,

this data structure also works exceedingly fast.

https://youtu.be/2Gul_-cbWM0

KD TREE

https://youtu.be/2Gul_-cbWM0
https://youtu.be/2Gul_-cbWM0
https://youtu.be/2Gul_-cbWM0
https://youtu.be/2Gul_-cbWM0
https://youtu.be/2Gul_-cbWM0
https://youtu.be/2Gul_-cbWM0
https://youtu.be/2Gul_-cbWM0
https://youtu.be/2Gul_-cbWM0
https://youtu.be/2Gul_-cbWM0
https://youtu.be/2Gul_-cbWM0

How it works for insertion?

A simple example to showcase the insertion into a

K-Dimensional Tree, we will use a k = 2.

The points we will be adding are: (7,8), (12,3),

(14,1), (4,12), (9,1), (2,7), and (10,19).

KD TREE

The first element inserted is (7,8). It will serve as the base node in the following

K-D Tree example.

KD TREE

The second element inserted is (12,3). It is placed to the right leaf node of (7,8)

because the X value, 12, is greater than the X value of base, 7.

KD TREE
The next element inserted into the K-D Tree is (14,1). At the first level, we

compare the X values of the set and since 14 is greater than 7 it moves to the

right of the tree. Next is the comparison between (12,3) and (14,1). Each level the

comparison operator changes, which means that we will be comparing the Y

value of each set. Since the Y of the inserted set is 1 which is less than 3, it is

inserted to the left leaf node of (12,3).

The next set inserted is (4,12). Because the X, 4, is less than the base nodes

X, which is 7, the set is inserted to the left leaf node.

KD TREE

The next set is (9,1). Since the X is greater than the base, it moves to the

right leaf. At level 2 we compare the Y values, which is less than the current

leaf, so we move to the left leaf of this node. On level 3 we restart and

compare by the X value again, but if we had multiple dimensions it would

moved to the next dimension. Since 9 is less than 14, we insert it to the left

of this leaf node.

KD TREE

The next set inserted is (2,7). Since the X is less than 7 it compares to the

left leaf node. As the Y value is less than 12, the second levels Y value, this

set is inserted to the left of the (4,12) leaf node.

KD TREE

The next set inserted is (10,19). 10 is greater than 7 so it moves to the right

leaf node. Additionally, 19 is greater than the second levels Y, so it it

inserted to the right leaf node.

KD TREE

In the case we are given a duplicate value for the level (such as the X of the

current leaf node is 10 and the insertion data X is also 10) we will insert

move to the right leaf node of the current node.

Splay trees are the self-balancing or self-adjusted binary search trees. In other

words, we can say that the splay trees are the variants of the binary search

trees. The prerequisite for the splay trees that we should know about the

binary search trees.

• A splay tree is a self-balancing tree, but AVL and Red-Black trees are also

self-balancing trees then. What makes the splay tree unique two trees. It

has one extra property that makes it unique is splaying.

• A splay tree contains the same operations as a Binary search tree, i.e.,

Insertion, deletion and searching, but it also contains one more operation,

i.e., splaying. So. all the operations in the splay tree are followed by

splaying.

SPLAY TREE

Splay trees are not strictly balanced trees, but they are roughly balanced trees.

Let's understand the search operation in the splay-tree.

Suppose we want to search 7 element in the tree, which is shown below:

SPLAY TREE

To search any element in the splay tree, first, we will perform the

standard binary search tree operation. As 7 is less than 10 so we will

come to the left of the root node. After performing the search

operation, we need to perform splaying. Here splaying means that the

operation that we are performing on any element should become the

root node after performing some rearrangements. The rearrangement

of the tree will be done through the rotations.

SPLAY TREE

Rotations

There are six types of rotations used for splaying:

1. Zig rotation (Right rotation)

2. Zag rotation (Left rotation)

3. Zig zag (Zig followed by zag)

4. Zag zig (Zag followed by zig)

5. Zig zig (two right rotations)

6. Zag zag (two left rotations)

SPLAY TREE

Rotations

Factors required for selecting a type of rotation

The following are the factors used for selecting a type of rotation:

1. Does the node which we are trying to rotate have a grandparent?

2. Is the node left or right child of the parent?

3. Is the node left or right child of the grandparent?

SPLAY TREE

Cases for the Rotations

Case 1: If the node does not have a grand-parent, and if

it is the right child of the parent, then we carry out the

left rotation; otherwise, the right rotation is performed.

Case 2: If the node has a grandparent, then based on the

following scenarios; the rotation would be performed:

SPLAY TREE

Scenario 1: If the node is the right of the parent and the parent is also

right of its parent, then zig zig right right rotation is performed.

Scenario 2: If the node is left of a parent, but the parent is right of its

parent, then zig zag right left rotation is performed.

Scenario 3: If the node is right of the parent and the parent is right of its

parent, then zig zig left left rotation is performed.

Scenario 4: If the node is right of a parent, but the parent is left of its

parent, then zig zag right-left rotation is performed.

SPLAY TREE

1. Zig Rotation

The Zig Rotation in splay tree is similar to the single right rotation in AVL

Tree rotations. In zig rotation, every node moves one position to the right

from its current position. Consider the following example...

SPLAY TREE

2. Zag Rotation :

The Zag Rotation in splay tree is similar to the single left rotation in

AVL Tree rotations. In zag rotation, every node moves one position

to the left from its current position. Consider the following

example...

SPLAY TREE

3. Zig-Zig Rotation

The Zig-Zig Rotation in splay tree is a double zig rotation. In zig-zig

rotation, every node moves two positions to the right from its current

position. Consider the following example...

SPLAY TREE

4. Zag-Zag Rotation :

The Zag-Zag Rotation in splay tree is a double zag rotation. In

zag-zag rotation, every node moves two positions to the left

from its current position. Consider the following example...

SPLAY TREE

5. Zig-Zag Rotation

The Zig-Zag Rotation in splay tree is a sequence of zig rotation

followed by zag rotation. In zig-zag rotation, every node moves one

position to the right followed by one position to the left from its

current position. Consider the following example...

SPLAY TREE

6. Zag-Zig Rotation

The Zag-Zig Rotation in splay tree is a sequence of zag rotation

followed by zig rotation. In zag-zig rotation, every node moves one

position to the left followed by one position to the right from its

current position. Consider the following example...

SPLAY TREE

Advantages of Splay tree

1. In the splay tree, we do not need to store the extra information. In contrast, in

AVL trees, we need to store the balance factor of each node that requires

extra space, and Red-Black trees also require to store one extra bit of

information that denotes the color of the node, either Red or Black.

2. It is the fastest type of Binary Search tree for various practical applications.

It is used in Windows NT and GCC compilers.

3. It provides better performance as the frequently accessed nodes will move

nearer to the root node, due to which the elements can be accessed quickly in

splay trees. It is used in the cache implementation as the recently accessed

data is stored in the cache so that we do not need to go to the memory for

accessing the data, and it takes less time.

SPLAY TREE

Drawback of Splay tree

The major drawback of the splay tree would be that

trees are not strictly balanced, i.e., they are roughly

balanced. Sometimes the splay trees are linear, so it

will take O(n) time complexity.

SPLAY TREE

THANK YOU!!!
My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

https://anandgharu.wordpress.com/

