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Introduction of Graph 
A graph is a non-linear data structure, which consists of 

vertices(or nodes) connected by edges(or arcs) where edges 

may be directed or undirected. 



Introduction of Graph 
A graph G can be defined as an ordered set G(V, E) where 

V(G) represents the set of vertices and E(G) represents the set 

of edges which are used to connect these vertices. 

 

Types of Graph : 

1. Directed Graph 

2. Undirected Graph 

3. Weighted Graph 

 



Undirecred Graph 
A graph G can be defined as an ordered set G(V, E) where 

V(G) represents the set of vertices and E(G) represents the set 

of edges which are used to connect these vertices. 

 

A Graph G(V, E) with 5 vertices (A, B, C, D, E) and six edges 

((A,B), (B,C), (C,E), (E,D), (D,B), (D,A)) is shown in the 

following figure. 

 



Directed Graph 
A graph can be directed or undirected. However, in an 

undirected graph, edges are not associated with the 

directions with them. An undirected graph is shown in the 

above figure since its edges are not attached with any of the 

directions. If an edge exists between vertex A and B then the 

vertices can be traversed from B to A as well as A to B. 



Wighted Graph 
A graph that has a value associated with every edge. The 

values corresponding to the edges are called weights. A value 

in a weighted graph can represent quantities such as cost, 

distance, and time, depending on the graph. Weighted 

graphs are typically used in modeling computer networks. 



Terminologies of Graph 
Path 

A path can be defined as the sequence of nodes that are 

followed in order to reach some terminal node V from the 

initial node U. 
 

Closed Path 

A path will be called as closed path if the initial node is 

same as terminal node. A path will be closed path if V0=VN. 
 

Simple Path 

If all the nodes of the graph are distinct with an exception 

V0=VN, then such path P is called as closed simple path. 



Terminologies of Graph 
Cycle 

A cycle can be defined as the path which has no repeated 

edges or vertices except the first and last vertices. 
 

Connected Graph 

A connected graph is the one in which some path exists 

between every two vertices (u, v) in V. There are no isolated 

nodes in connected graph. 
 



Terminologies of Graph 
 

Complete Graph 

A complete graph is the one in which every node is 
connected with all other nodes. A complete graph contain 
n(n-1)/2 edges where n is the number of nodes in the graph. 



Terminologies of Graph 
Weighted Graph 

In a weighted graph, each edge is assigned with some data 

such as length or weight. The weight of an edge e can be 

given as w(e) which must be a positive (+) value indicating 

the cost of traversing the edge. 

 



Terminologies of Graph 
Weighted Graph 

In a weighted graph, each edge is assigned with some data 

such as length or weight. The weight of an edge e can be 

given as w(e) which must be a positive (+) value indicating 

the cost of traversing the edge. 

 

Digraph 

A digraph is a directed graph in which each edge of the graph 

is associated with some direction and the traversing can be 

done only in the specified direction. 



Terminologies of Graph 
Loop 

An edge that is associated with the similar end points can be called 

as Loop. 

 

Adjacent Nodes 

If two nodes u and v are connected via an edge e, then the nodes u 

and v are called as neighbours or adjacent nodes. 

 

Degree of the Node 

A degree of a node is the number of edges that are connected with 

that node. A node with degree 0 is called as isolated node. 



Terminologies of Graph 
Loop 

An edge that is associated with the similar end points can be called 

as Loop. 

 

Adjacent Nodes 

If two nodes u and v are connected via an edge e, then the nodes u 

and v are called as neighbours or adjacent nodes. 

 

Degree of the Node 

A degree of a node is the number of edges that are connected with 

that node. A node with degree 0 is called as isolated node. 



Terminologies of Graph 
• Outgoing edges of a vertex are directed edges that the vertex is 

the origin. 

• Incoming edges of a vertex are directed edges that the vertex is 

the destination. 

• The degree of a vertex in a graph is the total number of edges 

incident to it. 

• In a directed graph, the out-degree of a vertex is the total number 

of outgoing edges 

• the in-degree is the total number of incoming edges. 



Terminologies of Graph 
Pendant Vertex 

A vertex with degree one is called a pendant vertex. 

 

Isolated Vertex 

A vertex with degree zero is called an isolated vertex. 



Terminologies of Graph 



Graph Abstract Data Type 

20 

1.          create() :Graph 

2.   insert  vertex(Graph, v)  :Graph 

3.   delete  vertex(Graph, v)  :Graph 

4.   insert edge(Graph, u, v)  :Graph 

5.   delete edge(Graph, u, v) :Graph 

6.   is empty(Graph) :Boolean; 

7.   end graph 

 



Graph Representation 
Adjacency Matrix Representation of Graph 

We can easily represent the graphs using the following ways, 

 

1. Adjacency matrix (sequential representation) 

2. Adjacency list (linked representation)  

3. Adjacency Multilist 

4. Inverse Adjacency List 



Graph Representation 
• By Graph representation, we simply mean the technique 

which is to be used in order to store some graph into the 

computer's memory. 

 

• There are two ways to store Graph into the computer's 

memory. In this part of this tutorial, we discuss each one 

of them in detail. 



Adjacency Matrix 

1. A sequential representation is an adjacency matrix. 

2. It's used to show which nodes are next to one another. 

I.e., is there any connection between nodes in a graph? 

3. You create an MXM matrix G for this representation. If 

an edge exists between vertex a and vertex b, the 

corresponding element of G, gi,j = 1, otherwise gi,j = 0. 

4. If there is a weighted graph, you can record the edge's 

weight instead of 1s and 0s. 



Adjacency Matrix 
Undirected Graph Representation : 



Adjacency Matrix 
Directed Graph Representation : 



Adjacency Matrix 
Weighted Undirected Graph Representation  

Weight or cost is indicated at the graph's edge, a weighted 

graph representing these values in the matrix 



Adjacency List 

1. A linked representation is an adjacency list. 

2. You keep a list of neighbors for each vertex in the graph 

in this representation. It means that each vertex in the 

graph has a list of its neighboring vertices. 

3. You have an array of vertices indexed by the vertex 

number, and the corresponding array member for each 

vertex x points to a singly linked list of x's neighbors 



Adjacency List 
Weighted Undirected Graph Representation Using 

Linked-List 



Adjacency List 
Weighted Undirected Graph Representation Using an 

Array 



Graph Representation 

1. Sequential Representation 

• In sequential representation, we use adjacency matrix to 

store the mapping represented by vertices and edges. In 

adjacency matrix, the rows and columns are represented 

by the graph vertices. A graph having n vertices, will have 

a dimension n x n. 

 

• An entry Mij in the adjacency matrix representation of an 

undirected graph G will be 1 if there exists an edge 

between Vi and Vj. 



Graph Representation 
An undirected graph and its adjacency matrix 
representation is shown in the following figure. 

in the above figure, we can see the mapping among the vertices (A, B, C, D, E) is 

represented by using the adjacency matrix which is also shown in the figure. 

There exists different adjacency matrices for the directed and undirected graph. In 

directed graph, an entry Aij will be 1 only when there is an edge directed from Vi to Vj. 



Graph Representation 
An undirected graph and its adjacency matrix 
representation is shown in the following figure. 



Graph Representation 
A directed graph and its adjacency matrix representation is shown in 

the following figure. 

Representation of weighted directed graph is different. Instead of filling the 

entry by 1, the Non- zero entries of the adjacency matrix are represented by 

the weight of respective edges. 



Graph Representation 
The weighted directed graph along with the adjacency matrix 

representation is shown in the following figure. 

 



Graph Representation 
2. Linked Representation : 

In the linked representation, an adjacency list is used to store the 

Graph into the computer's memory. 

Consider the undirected graph shown in the following figure and 

check the adjacency list representation. 



Graph Representation 
2. Linked Representation : 



Graph Representation 
An adjacency list is maintained for each node present in the graph 

which stores the node value and a pointer to the next adjacent node 

to the respective node. If all the adjacent nodes are traversed then 

store the NULL in the pointer field of last node of the list. The sum 

of the lengths of adjacency lists is equal to the twice of the number 

of edges present in an undirected graph. 

 

Consider the directed graph shown in the following figure and check 

the adjacency list representation of the graph. 

 



Graph Representation 

In a directed graph, the sum of lengths of all the adjacency lists is 

equal to the number of edges present in the graph. 

 

In the case of weighted directed graph, each node contains an extra 

field that is called the weight of the node. The adjacency list 

representation of a directed graph is shown in the following figure. 



Graph Representation 



Graph Representation Examples 



Graph Representation Examples 



Graph Representation Examples 
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 Multiclass are lists where nodes may be shared among 

several other lists 



44 

 

 The node structure of such a list can be    represented as 

follows : 
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 Inverse adjacency lists is a set of lists that 

contain one list for vertex 

 

 Each list contains a node per vertex adjacent 

to the vertex it represents 
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Graph Representation 



Degree of Vertex in Graph 
Degree of Vertex in a Directed Graph 

In a directed graph, each vertex has an indegree and an outdegree. 
 

Indegree of a Graph 

Indegree of vertex V is the number of edges which are coming into 

the vertex V. 

Notation − deg−(V). 

 

Outdegree of a Graph 

Outdegree of vertex V is the number of edges which are going out 

from the vertex V. 

Notation − deg+(V). 



Degree of Vertex in Graph 

In-degree : 

In-degree of a vertex is the number of 

edges coming to the vertex. 

 

In-degree of vertex 0 = 0 

In-degree of vertex 1 = 1 

In-degree of vertex 2 = 1 

In-degree of vertex 3 = 3 

In-degree of vertex 4 = 2 

Out-degree 

Out-degree of a vertex is the number edges 

which are coming out from the vertex. 

 

Out-degree of vertex 0 = 3 

Out-degree of vertex 1 = 2 

Out-degree of vertex 2 = 1 

Out-degree of vertex 3 = 1 

Out-degree of vertex 4 = 0 



Degree of Vertex in Graph 

Vertex Indegree Outdegree 

a 1 2 

b 2 0 

c 2 1 

d 1 1 

e 1 1 

f 1 1 

g 0 2 



Graph Traversal Algorithms 
Traversing the graph means examining all the nodes and vertices of 

the graph. There are two standard methods by using which, we can 

traverse the graphs. Lets discuss each one of them in detail. 

1. Breadth First Search 

2. Depth First Search 



BFS Algorithms 
1. Breadth-first search is a graph traversal algorithm that starts 

traversing the graph from the root node and explores all the 

neighboring nodes. Then, it selects the nearest node and 

explores all the unvisited nodes. While using BFS for traversal, 

any node in the graph can be considered as the root node. 

2. BFS is the most commonly used approach. It is a recursive 

algorithm to search all the vertices of a tree or graph data 

structure. BFS puts every vertex of the graph into two categories 

- visited and non-visited. It selects a single node in a graph and, 

after that, visits all the nodes adjacent to the selected node 



BFS Algorithms 



BFS Algorithms 



BFS Algorithms 
As in the example given above, BFS algorithm 

traverses from A to B to E to F first then to C and 

G lastly to D. It employs the following rules. 

• Rule 1 − Visit the adjacent unvisited vertex. 

Mark it as visited. Display it. Insert it in a queue. 

• Rule 2 − If no adjacent vertex is found, 

remove the first vertex from the queue. 

• Rule 3 − Repeat Rule 1 and Rule 2 until the 

queue is empty. 



BFS Algorithms 
Step 1: SET STATUS = 1 (ready state) 

for each node in G 

Step 2: Enqueue the starting node A 

and set its STATUS = 2 

(waiting state) 

Step 3: Repeat Steps 4 and 5 until 

QUEUE is empty 

Step 4: Dequeue a node N. Process it 

and set its STATUS = 3 

(processed state). 

Step 5: Enqueue all the neighbours of 

N that are in the ready state 

(whose STATUS = 1) and set 

their STATUS = 2 

(waiting state) 

[END OF LOOP] 

Step 6: EXIT 



BFS Algorithms 
Rule 1 − Visit the adjacent unvisited vertex. Mark it as 

visited. Display it. Insert it in a queue. 

 

Rule 2 − If no adjacent vertex is found, remove the first 

vertex from the queue. 

 

Rule 3 − Repeat Rule 1 and Rule 2 until the queue is 

empty. 



BFS Algorithms 
Step 1: SET STATUS = 1 (ready state) for each node in G 

Step 2: Enqueue the starting node A and set its STATUS = 2 (waiting state) 

Step 3: Repeat Steps 4 and 5 until QUEUE is empty 

Step 4: Dequeue a node N. Process it and set its STATUS = 3 (processed 

state). 

Step 5: Enqueue all the neighbours of N that are in the ready state (whose 

STATUS = 1) and set 

their STATUS = 2 

(waiting state) 

[END OF LOOP] 



Example of BFS Algorithms 



Complexity of BFS Algorithms 

The time complexity of the BFS algorithm is 

represented in the form of O(V + E), where V is the 

number of nodes and E is the number of edges. 

 

The space complexity of the algorithm is O(V). 

 



Advantages and Disadvantages 
of BFS 

• Advantages : 

1. A BFS will find the shortest path between the starting point and any other 

reachable node.  

2. A depth-first search will not necessarily find the shortest path. 

 

• Disadvantages : 

A BFS on a binary tree generally requires more memory than a DFS. 



Application of BFS Algorithms 
1. BFS can be used to find the neighboring locations from a given source 

location. 

2. In a peer-to-peer network, BFS algorithm can be used as a traversal 

method to find all the neighboring nodes. Most torrent clients, such as 

BitTorrent, uTorrent, etc. employ this process to find "seeds" and 

"peers" in the network. 

3. BFS is used to determine the shortest path and minimum spanning tree. 

4. BFS is also used in Cheney's technique to duplicate the garbage 

collection. 

5. It can be used in ford-Fulkerson method to compute the maximum flow 

in a flow network. 



Application of BFS Algorithms 

1. To build index by search index 

2. For GPS navigation 

3. Path finding algorithms 

4. Cycle detection in an undirected graph 

5. In minimum spanning tree 



Application of  BFS Algorithms 



Depth First Search (DFS) 

Depth first search (DFS) algorithm starts with the initial node of the graph 

G, and then goes to deeper and deeper until we find the goal node or the 

node which has no children. The algorithm, then backtracks from the dead 

end towards the most recent node that is yet to be completely unexplored. 

 

The data structure which is being used in DFS is stack. The process is 

similar to BFS algorithm. In DFS, the edges that leads to an unvisited node 

are called discovery edges while the edges that leads to an already visited 

node are called block edges. 



DFS Algorithms 
Depth First Search (DFS) algorithm traverses a 

graph in a depthward motion and uses a stack to 

remember to get the next vertex to start a search, 

when a dead end occurs in any iteration. 

• As in the example given above, DFS 

algorithm traverses from A to B to C to D first 

then to E, then to F and lastly to G. It employs the 

following rules. 

• Rule 1 − Visit the adjacent unvisited vertex. 

Mark it as visited. Display it. Push it in a stack. 

• Rule 2 − If no adjacent vertex is found, pop 

up a vertex from the stack. (It will pop up all the 

vertices from the stack, which do not have 

adjacent vertices.) 

• Rule 3 − Repeat Rule 1 and Rule 2 until the 

stack is empty 



DFS Algorithms 

Traversing the above graph in BFS fashion would result from A -> B -> E -

> F -> C -> G -> D. The algorithm starts from node A and traverses all its 

child nodes. As soon as it encounters B, it seems that it has further child 

nodes. So, the child nodes of B are traversed before proceeding to the next 

child node of A 



DFS Algorithms 
Step 1: SET STATUS = 1 (ready state) for each node in G 

Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting 

state) 

Step 3: Repeat Steps 4 and 5 until STACK is empty 

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state) 

Step 5: Push on the stack all the neighbours of N that are in the ready state 

(whose STATUS = 1) and set their 

STATUS = 2 (waiting state) 

[END OF LOOP] 

Step 6: EXIT 



DFS Algorithms 
Depth first search (DFS) algorithm starts with the initial node of the 

graph G, and then goes to deeper and deeper until we find the goal 

node or the node which has no children. The algorithm, then 

backtracks from the dead end towards the most recent node that is 

yet to be completely unexplored. 

 

The data structure which is being used in DFS is stack. The process 

is similar to BFS algorithm. In DFS, the edges that leads to an 

unvisited node are called discovery edges while the edges that leads 

to an already visited node are called block edges. 



DFS Algorithms 
DFS is an algorithm for finding or traversing graphs or trees 

in depth-ward direction. The execution of the algorithm 

begins at the root node and explores each branch before 

backtracking. It uses a stack data structure to remember, to 

get the subsequent vertex, and to start a search, whenever a 

dead-end appears in any iteration.  

The full form of DFS is Depth-first search. 



DFS Algorithms 



DFS Algorithms 
Step 1: SET STATUS = 1 (ready state) for each node in G 

Step 2: Push the starting node A on the stack and set its STATUS = 2 

(waiting state) 

Step 3: Repeat Steps 4 and 5 until STACK is empty 

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed 

state) 

Step 5: Push on the stack all the neighbours of N that are in the ready state 

(whose STATUS = 1) and set their 

STATUS = 2 (waiting state) 

[END OF LOOP] 

Step 6: EXIT 



DFS Algorithms Example 

The printing sequence of the graph will be : 

H → A → D → F → B → C → G → E   



Complexity of DFS Algorithms 

Complexity of Depth First Search 

The time complexity of the DFS algorithm is 

represented in the form of O(V + E), where V is the 

number of nodes and E is the number of edges. 

The space complexity of the algorithm is O(V). 



Example of DFS Algorithms 



Advantages and Disadvantages of 
DFS 

• Advantages : 

1. Depth-first search on a binary tree generally requires less memory than 

breadth-first. 

2. Depth-first search can be easily implemented with recursion.. 

 

• Disadvantages : 

A DFS doesn't necessarily find the shortest path to a node, while breadth-

first search does. 



Application of DFS Algorithms 

1. For finding the path 

2. To test if the graph is bipartite 

3. For finding the strongly connected components of a 

graph 

4. For detecting cycles in a graph 



BFS Vs DFS 
sn BFS DFS 

1 
BFS finds the shortest path to the 

destination. 

DFS goes to the bottom of a subtree, 

then backtracks. 

2 
The full form of BFS is Breadth-

First Search. 

The full form of DFS is Depth First 

Search. 

3 
It uses a queue to keep track of the 

next location to visit. 

It uses a stack to keep track of the 

next location to visit. 

4 
BFS traverses according to tree 

level. 

DFS traverses according to tree 

depth. 

5 It is implemented using FIFO list. It is implemented using LIFO list. 

6 
It requires more memory as 

compare to DFS. 

It requires less memory as compare 

to BFS. 



BFS Vs DFS 
sn BFS DFS 

7 
There is no need of 

backtracking in BFS. 

There is a need of backtracking 

in DFS. 

8 
You can never be trapped into 

finite loops. 

You can be trapped into infinite 

loops. 

9 

If you do not find any goal, you 

may need to expand many 

nodes before the solution is 

found. 

If you do not find any goal, the 

leaf node backtracking may 

occur. 



Applications of Graph 
1. In Computer science graphs are used to represent the flow of 

computation. 

2. Google maps uses graphs for building transportation systems. 

3. In Facebook, users are considered to be the vertices and if they 

are friends then there is an edge running between them. 

4. Graphs are used to define the flow of computation. 

5. Graphs are used to represent networks of communication. 

6. Graphs are used to represent data organization. 

7. Graph theory is used to find shortest path in road or a network. 



Tree Vs Graph 



Spanning Tree of Graph 
A spanning tree is a subset of Graph G, which has all the vertices 

covered with minimum possible number of edges. Hence, a 

spanning tree does not have cycles and it cannot be disconnected.. 



Minimum Spanning Tree 



Spanning Tree of Graph 
• Spanning Tree Applications 

1. Computer Network Routing Protocol 

2. Cluster Analysis 

3. Civil Network Planning 

 

• Minimum Spanning tree Applications 

1. To find paths in the map 

2. To design networks like telecommunication networks, water 

supply networks, and electrical grids. 



GREEDY STRATEGIES 

 

 

 

Greedy algorithm : 

 An algorithm is designed to achieve optimum solution for a given 

problem. In greedy algorithm approach, decisions are made from the 

given solution domain. As being greedy, the closest solution that seems 

to provide an optimum solution is chosen. 

 

Example of greedy strategy : 

1. Travelling Salesman Problem 

2. Prim's Minimal Spanning Tree Algorithm 

3. Kruskal's Minimal Spanning Tree Algorithm 

4. Dijkstra's Minimal Spanning Tree Algorithm 

5. Knapsack Problem 

6. Job Scheduling Problem 



GREEDY STRATEGIES 

 

 

 

1. Minimum Spanning tree (Prims or Kruskal’s algorithms) 

 The cost of the spanning tree is the sum of the weights of all the edges 

in the tree. There can be many spanning trees. Minimum spanning tree is 

the spanning tree where the cost is minimum among all the spanning 

trees. There also can be many minimum spanning trees. 

 



GREEDY STRATEGIES 

 

 

 

1. Kruskal’s algorithms : 

 Kruskal’s Algorithm builds the spanning tree by adding edges one by 

one into a growing spanning tree. Kruskal's algorithm follows greedy 

approach as in each iteration it finds an edge which has least weight and 

add it to the growing spanning tree. 

Algorithm Steps : 

1. Sort the graph edges with respect to their weights. 

2. Start adding edges to the MST from the edge with the smallest weight 

until the edge of the largest weight. 

3. Only add edges which doesn't form a cycle , edges which connect only 

disconnected components. 

 



GREEDY STRATEGIES 

 

 

 

1. Kruskal’s algorithms : 

•  Kruskal's algorithm is a minimum spanning tree algorithm that 

takes a graph as input and finds the subset of the edges of that 

graph which 

 

• form a tree that includes every vertex 

• has the minimum sum of weights among all the trees that can 

be formed from the graph 

• Kruskal's Algorithm Complexity 

• The time complexity Of Kruskal's Algorithm is: O(E log E). 



GREEDY STRATEGIES 

 

 

 

1. Kruskal’s algorithms : 

The steps for implementing Kruskal's algorithm are as 

follows: 

1. Sort all the edges from low weight to high 

2. Take the edge with the lowest weight and add it to the 

spanning tree. If adding the edge created a cycle, then 

reject this edge. 

3. Keep adding edges until we reach all vertices. 

 



GREEDY STRATEGIES 

 

 

 

2. Kruskal’s algorithms : Example 

 

 . 

 



GREEDY STRATEGIES 

 

 

 

2. Kruskal’s algorithms : Example 

 

 . 

 
1 



GREEDY STRATEGIES 

 

 

 

2. Kruskal’s algorithms : Example 

 

 . 

 



GREEDY STRATEGIES 

 

 

 

2. Kruskal Algorithms : Example 



GREEDY STRATEGIES 

 

 

 

1. Kruskal Algorithms : Example 



GREEDY STRATEGIES 

 

 

 

1. Kruskal Algorithms : 

Kruskal's Algorithm Applications 

1. In order to layout electrical wiring 

2. In computer network (LAN connection) 



GREEDY STRATEGIES 

 

 

 

1. Kruskal Algorithms : 



GREEDY STRATEGIES 

 

 

 

1. Kruskal Algorithms : 



GREEDY STRATEGIES 

 

 

 

2. Prims algorithm: Prim’s Algorithm also use Greedy approach to find 

the minimum spanning tree. In Prim’s Algorithm we grow the spanning 

tree from a starting position. Unlike an edge in Kruskal's, we 

add vertex to the growing spanning tree in Prim's. 

 

Algorithm Steps: 

1. Initialize the minimum spanning tree with a vertex chosen at random. 

2. Find all the edges that connect the tree to new vertices, find the 

minimum and add it to the tree. 

3. Keep repeating step 2 until we get a minimum spanning tree. 

Prim's Algorithm Complexity 

The time complexity of Prim's algorithm is O(E log V). 

 



GREEDY STRATEGIES 

 

 

 

2. Prims algorithm: Example 



GREEDY STRATEGIES 

 

 

 

1. Prims’ algorithms : Example 

 

 . 
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GREEDY STRATEGIES 

 

 

 

2. Prims algorithm: Example 



GREEDY STRATEGIES 

 

 

 

2. Prims algorithm: Example 



GREEDY STRATEGIES 

 

 

 

2. Prims algorithm: Example 



GREEDY STRATEGIES 

 

 

 

2. Prims algorithm: Example 



GREEDY STRATEGIES 

 

 

 

2. Prims algorithm: Example 

Kruska's algorithm. 



GREEDY STRATEGIES 

 

 

 

2. Prims algorithm: 

Prim's Algorithm Application 

1. Laying cables of electrical wiring 

2. In network designed 

3. To make protocols in network cycles 



Advantages of Disadvantages of 
Greedy approach 

 

 

 

Advantages :  

• The algorithm is easier to describe. 

• This algorithm can perform better than other algorithms 

(but, not in all cases). 

 

Disadvantages : 

• The greedy algorithm doesn't always produce the optimal 

solution. 



Applications of Greedy Algorithms 

 

 

 

• It is used in finding the shortest path. 

• It is used to find the minimum spanning tree using the 

prim's algorithm or the Kruskal's algorithm. 

• It is used in a job sequencing with a deadline. 

• This algorithm is also used to solve the fractional 

knapsack problem. 



Prim’s Vs Kruskal Algorithms 
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Dijkstra’s Algorithms 

 

 

 

• Dijkstra's algorithm allows us to find the shortest path 

between any two vertices of a graph. 

• It differs from the minimum spanning tree because the 

shortest distance between two vertices might not include 

all the vertices of the graph. 



How Dijkstra’s Algorithms works? 

 

 

 

• Dijkstra's Algorithm works on the basis that any subpath 

B -> D of the shortest path A -> D between vertices A 

and D is also the shortest path between vertices B and D. 



How Dijkstra’s Algorithms works? 

 

 

 

• Djikstra used this property in the opposite direction i.e 

we overestimate the distance of each vertex from the 

starting vertex. Then we visit each node and its 

neighbors to find the shortest subpath to those 

neighbors. 

 

• The algorithm uses a greedy approach in the sense that 

we find the next best solution hoping that the end result 

is the best solution for the whole problem. 



Algorithms of Dijkstra’s Algorithms 

 

 

 



Algorithms of Dijkstra’s Algorithms 

 

 

 

function dijkstra(G, S) 

    for each vertex V in G 

        distance[V] <- infinite 

        previous[V] <- NULL 

        If V != S, add V to Priority Queue Q 

    distance[S] <- 0 

  

    while Q IS NOT EMPTY 

        U <- Extract MIN from Q 

        for each unvisited neighbour V of U 

            tempDistance <- distance[U] + edge_weight(U, V) 

            if tempDistance < distance[V] 

                distance[V] <- tempDistance 

                previous[V] <- U 

    return distance[], previous[] 



Example of Dijkstra’s Algorithms 

1.Start with a weighted graph 

• Example of Dijkstra's algorithm 

It is easier to start with an example and then think about the 

algorithm. 



Example of Dijkstra’s Algorithms 

Choose a starting vertex and assign infinity path values 

to all other devices 

• Example of Dijkstra's algorithm 



Example of Dijkstra’s Algorithms 

Go to each vertex and update its path length 

• Example of Dijkstra's algorithm 



Example of Dijkstra’s Algorithms 

If the path length of the adjacent vertex is lesser than 

new path length, don't update it 



Example of Dijkstra’s Algorithms 

Avoid updating path lengths of already visited vertices 



Example of Dijkstra’s Algorithms 

After each iteration, we pick the unvisited vertex with 

the least path length. So we choose 5 before 7 



Example of Dijkstra’s Algorithms 

Notice how the rightmost vertex has its path length 

updated twice 



Example of Dijkstra’s Algorithms 

Repeat until all the vertices have been visited 



Example of Dijkstra’s Algorithms 
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Example of Dijkstra’s Algorithms 

ANSWERs : https://www.freecodecamp.org/news/dijkstras-shortest-path-

algorithm-visual-introduction/ 
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Example of Dijkstra’s Algorithms 



Time Complexity Dijkstra’s Algorithms 

 

 

 

• Time Complexity: O(E Log V) 

where, E is the number of edges and V is the number of 

vertices. 

 

• Space Complexity: O(V) 



Applications of Dijkstra’s Algorithms 

 

 

 

• To find the shortest path 

• In social networking applications 

• In a telephone network 

• To find the locations in the map 
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Floyd-Warshall Algorithms 

 

 

 

• Floyd Warshall Algorithm is a famous algorithm. 

• It is used to solve All Pairs Shortest Path Problem. 

• It computes the shortest path between every pair of 

vertices of the given graph. 

• Floyd Warshall Algorithm is an example of dynamic 

programming approach. 



Floyd-Warshall Algorithms 

 

 

 

n = no of vertices 

A = matrix of dimension n*n 

for k = 1 to n 

    for i = 1 to n 

        for j = 1 to n 

            Ak[i, j] = min (Ak-1[i, j], Ak-1[i, k] + Ak-1[k, j]) 

return A 

Sample e.g. : https://www.gatevidyalay.com/floyd-warshall-algorithm-

shortest-path-algorithm/ 

https://www.gatevidyalay.com/floyd-warshall-algorithm-shortest-path-algorithm/
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Initial graph 

Example : https://www.programiz.com/dsa/floyd-warshall-algorithm 

https://www.programiz.com/dsa/floyd-warshall-algorithm
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Example of Floyd-Warshall Algorithms 

 

 

 

Fill each cell with the distance between ith and jth vertex 



Example of Floyd-Warshall Algorithms 

 

 

 

Calculate the distance from the source vertex to 

destination vertex through this vertex k 



Example of Floyd-Warshall Algorithms 

 

 

 

Calculate the distance from the source vertex to 

destination vertex through this vertex 2 



Example of Floyd-Warshall Algorithms 

 

 

 

Calculate the distance from the source vertex to 

destination vertex through this vertex 3 



Example of Floyd-Warshall Algorithms 

 

 

 

Calculate the distance from the source vertex to 

destination vertex through this vertex 4 

A4 gives the shortest path between each pair of vertices. 



Floyd-Warshall Algorithms 

 

 

 

• Advantages : 

1. It is extremely simple. 

2. It is easy to implement. 



Floyd-Warshall Algorithms 

 

 

 

• Time Complexity 

There are three loops. Each loop has constant complexities. 

So, the time complexity of the Floyd-Warshall algorithm is 

O(n
3
). 

 

• Space Complexity 

The space complexity of the Floyd-Warshall algorithm is 

O(n
2
). 



Applications of Floyd-Warshall 
Algorithms 

 

 

 

1. To find the shortest path is a directed graph 

2. To find the transitive closure of directed 

graphs 

3. To find the Inversion of real matrices 

4. For testing whether an undirected graph is 

bipartite 

5. https://youtu.be/NdBHw5mqIZE  https://youtu.be/Gc4mWrmJBsw 
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Topological Sort/Ordering 

 

 

 

• Topological Sorting is possible if and only if the graph is 

a Directed Acyclic Graph. 

• There may exist multiple different topological orderings 

for a given directed acyclic graph. 



Topological Sort/Ordering 

 

 

 

Find the number of different topological orderings possible for the 

given graph- 

Step-01: 

 Write in-degree of each vertex- 



Topological Sort/Ordering 

 

 

 

Step-02: 

• Vertex-A has the least in-degree. 

• So, remove vertex-A and its associated edges. 

• Now, update the in-degree of other vertices. 



Topological Sort/Ordering 

 

 

 

Step-03: 

• Vertex-B has the least in-degree. 

• So, remove vertex-B and its associated edges. 

• Now, update the in-degree of other vertices. 



Topological Sort/Ordering 

 

 

 

Step-04: 

• There are two vertices with the least in-degree. So, following 2 

cases are possible- 

In case-01, 

1. Remove vertex-C and its associated edges. 

2. Then, update the in-degree of other vertices. 

 

In case-02, 

1. Remove vertex-D and its associated edges. 

2. Then, update the in-degree of other vertices. 



Topological Sort/Ordering 

 

 

 

Step-04: 



Topological Sort/Ordering 

 

 

 

Step-05: 

• Now, the above two cases are continued separately in the similar 

manner. 

In case-01, 

1. Remove vertex-D since it has the least in-degree. 

2. Then, remove the remaining vertex-E. 
 

• In case-02, 

1. Remove vertex-C since it has the least in-degree. 

2. Then, remove the remaining vertex-E. 



Topological Sort/Ordering 

 

 

 

Conclusion- 

  

For the given graph, following 2 different topological 

orderings are possible- 

 

A B C D E 

A B D C E 



Topological Sort/Ordering 

 

 

 

Folowing are the 4 different Topological order : 

1 2 3 4 5 6 

1 2 3 4 6 5 

1 3 2 4 5 6 

1 3 2 4 6 5 

https://www.gatevidyalay.com/topological-sort-topological-sorting/ 
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Applications of Topological 
Sort/Ordering 

 

 

 

• Few important applications of topological sort are- 

 

1. Scheduling jobs from the given dependencies among jobs 

2. Instruction Scheduling 

3. Determining the order of compilation tasks to perform in 

makefiles 

4. Data Serialization 



AOE Network and Critical Path 

 

 

 

• AOE(Activity on edge network): in a weighted directed 

graph representing the project, the vertex represents the 

event, the directed edge represents the activity, and the 

weight on the edge represents the duration of the activity. 

Such a directed graph is called the edge represents the 

activity network, or AOE network for short 

• The vertices in the AOE network without edges are called 

starting points (or source points); Points without edges are 

called endpoints (or sinks) 



AOE Network and Critical Path 

 

 

 

• Properties of AOE networks 

1. Only after the event represented by a vertex occurs, the 

activity starting from the vertex can start; 

2. The event represented by a vertex can occur only when all 

activities entering a vertex are completed. 

• AOE network can solve the following problems 

1. At least how long will it take to complete the whole 

project 

2. What activities should be accelerated to shorten the time 

required to complete the project 



AOE Network and Critical Path 

 

 

 

•  Key activities 

• Critical path: there may be more than one activity that 

takes the longest time, so the most important thing is to 

find the activity that cannot be delayed is called critical 

activity 

• If the time of an activity is shortened and the overall end 

time cannot be changed, the activity is not a key activity; If 

you shorten the time of an activity, the activity is the key 

activity. 



AOE Network and Critical Path 
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