
“GRAPH”

Prepared By

Prof. Anand N. Gharu
(Assistant Professor)

 Computer Dept.

15 February 2024

.

CLASS : SE COMPUTER 2019

SUBJECT : DSA (SEM-II)

UNIT : III

Note: The material to prepare this presentation has been taken from internet and are generated only

for students reference and not for commercial use. 1

SYLLABUS

SYLLABUS

Basic Concepts, Storage representation, Adjacency matrix,

adjacency list, adjacency multi list, inverse adjacency list.

Traversals - depth first and breadth first, Minimum

spanning Tree, Greedy algorithms for computing minimum

spanning tree- Prims and Kruskal Algorithms, Dikjtra's

Single source shortest path, All pairs shortest paths- Flyod-

Warshall Algorithm Topological ordering.

UNIT-III

GRAPH

Introduction of Graph
A graph is a non-linear data structure, which consists of

vertices(or nodes) connected by edges(or arcs) where edges

may be directed or undirected.

Introduction of Graph
A graph G can be defined as an ordered set G(V, E) where

V(G) represents the set of vertices and E(G) represents the set

of edges which are used to connect these vertices.

Types of Graph :

1. Directed Graph

2. Undirected Graph

3. Weighted Graph

Undirecred Graph
A graph G can be defined as an ordered set G(V, E) where

V(G) represents the set of vertices and E(G) represents the set

of edges which are used to connect these vertices.

A Graph G(V, E) with 5 vertices (A, B, C, D, E) and six edges

((A,B), (B,C), (C,E), (E,D), (D,B), (D,A)) is shown in the

following figure.

Directed Graph
A graph can be directed or undirected. However, in an

undirected graph, edges are not associated with the

directions with them. An undirected graph is shown in the

above figure since its edges are not attached with any of the

directions. If an edge exists between vertex A and B then the

vertices can be traversed from B to A as well as A to B.

Wighted Graph
A graph that has a value associated with every edge. The

values corresponding to the edges are called weights. A value

in a weighted graph can represent quantities such as cost,

distance, and time, depending on the graph. Weighted

graphs are typically used in modeling computer networks.

Terminologies of Graph
Path

A path can be defined as the sequence of nodes that are

followed in order to reach some terminal node V from the

initial node U.

Closed Path

A path will be called as closed path if the initial node is

same as terminal node. A path will be closed path if V0=VN.

Simple Path

If all the nodes of the graph are distinct with an exception

V0=VN, then such path P is called as closed simple path.

Terminologies of Graph
Cycle

A cycle can be defined as the path which has no repeated

edges or vertices except the first and last vertices.

Connected Graph

A connected graph is the one in which some path exists

between every two vertices (u, v) in V. There are no isolated

nodes in connected graph.

Terminologies of Graph

Complete Graph

A complete graph is the one in which every node is
connected with all other nodes. A complete graph contain
n(n-1)/2 edges where n is the number of nodes in the graph.

Terminologies of Graph
Weighted Graph

In a weighted graph, each edge is assigned with some data

such as length or weight. The weight of an edge e can be

given as w(e) which must be a positive (+) value indicating

the cost of traversing the edge.

Terminologies of Graph
Weighted Graph

In a weighted graph, each edge is assigned with some data

such as length or weight. The weight of an edge e can be

given as w(e) which must be a positive (+) value indicating

the cost of traversing the edge.

Digraph

A digraph is a directed graph in which each edge of the graph

is associated with some direction and the traversing can be

done only in the specified direction.

Terminologies of Graph
Loop

An edge that is associated with the similar end points can be called

as Loop.

Adjacent Nodes

If two nodes u and v are connected via an edge e, then the nodes u

and v are called as neighbours or adjacent nodes.

Degree of the Node

A degree of a node is the number of edges that are connected with

that node. A node with degree 0 is called as isolated node.

Terminologies of Graph
Loop

An edge that is associated with the similar end points can be called

as Loop.

Adjacent Nodes

If two nodes u and v are connected via an edge e, then the nodes u

and v are called as neighbours or adjacent nodes.

Degree of the Node

A degree of a node is the number of edges that are connected with

that node. A node with degree 0 is called as isolated node.

Terminologies of Graph
• Outgoing edges of a vertex are directed edges that the vertex is

the origin.

• Incoming edges of a vertex are directed edges that the vertex is

the destination.

• The degree of a vertex in a graph is the total number of edges

incident to it.

• In a directed graph, the out-degree of a vertex is the total number

of outgoing edges

• the in-degree is the total number of incoming edges.

Terminologies of Graph
Pendant Vertex

A vertex with degree one is called a pendant vertex.

Isolated Vertex

A vertex with degree zero is called an isolated vertex.

Terminologies of Graph

Graph Abstract Data Type

20

1. create() :Graph

2. insert vertex(Graph, v) :Graph

3. delete vertex(Graph, v) :Graph

4. insert edge(Graph, u, v) :Graph

5. delete edge(Graph, u, v) :Graph

6. is empty(Graph) :Boolean;

7. end graph

Graph Representation
Adjacency Matrix Representation of Graph

We can easily represent the graphs using the following ways,

1. Adjacency matrix (sequential representation)

2. Adjacency list (linked representation)

3. Adjacency Multilist

4. Inverse Adjacency List

Graph Representation
• By Graph representation, we simply mean the technique

which is to be used in order to store some graph into the

computer's memory.

• There are two ways to store Graph into the computer's

memory. In this part of this tutorial, we discuss each one

of them in detail.

Adjacency Matrix

1. A sequential representation is an adjacency matrix.

2. It's used to show which nodes are next to one another.

I.e., is there any connection between nodes in a graph?

3. You create an MXM matrix G for this representation. If

an edge exists between vertex a and vertex b, the

corresponding element of G, gi,j = 1, otherwise gi,j = 0.

4. If there is a weighted graph, you can record the edge's

weight instead of 1s and 0s.

Adjacency Matrix
Undirected Graph Representation :

Adjacency Matrix
Directed Graph Representation :

Adjacency Matrix
Weighted Undirected Graph Representation

Weight or cost is indicated at the graph's edge, a weighted

graph representing these values in the matrix

Adjacency List

1. A linked representation is an adjacency list.

2. You keep a list of neighbors for each vertex in the graph

in this representation. It means that each vertex in the

graph has a list of its neighboring vertices.

3. You have an array of vertices indexed by the vertex

number, and the corresponding array member for each

vertex x points to a singly linked list of x's neighbors

Adjacency List
Weighted Undirected Graph Representation Using

Linked-List

Adjacency List
Weighted Undirected Graph Representation Using an

Array

Graph Representation

1. Sequential Representation

• In sequential representation, we use adjacency matrix to

store the mapping represented by vertices and edges. In

adjacency matrix, the rows and columns are represented

by the graph vertices. A graph having n vertices, will have

a dimension n x n.

• An entry Mij in the adjacency matrix representation of an

undirected graph G will be 1 if there exists an edge

between Vi and Vj.

Graph Representation
An undirected graph and its adjacency matrix
representation is shown in the following figure.

in the above figure, we can see the mapping among the vertices (A, B, C, D, E) is

represented by using the adjacency matrix which is also shown in the figure.

There exists different adjacency matrices for the directed and undirected graph. In

directed graph, an entry Aij will be 1 only when there is an edge directed from Vi to Vj.

Graph Representation
An undirected graph and its adjacency matrix
representation is shown in the following figure.

Graph Representation
A directed graph and its adjacency matrix representation is shown in

the following figure.

Representation of weighted directed graph is different. Instead of filling the

entry by 1, the Non- zero entries of the adjacency matrix are represented by

the weight of respective edges.

Graph Representation
The weighted directed graph along with the adjacency matrix

representation is shown in the following figure.

Graph Representation
2. Linked Representation :

In the linked representation, an adjacency list is used to store the

Graph into the computer's memory.

Consider the undirected graph shown in the following figure and

check the adjacency list representation.

Graph Representation
2. Linked Representation :

Graph Representation
An adjacency list is maintained for each node present in the graph

which stores the node value and a pointer to the next adjacent node

to the respective node. If all the adjacent nodes are traversed then

store the NULL in the pointer field of last node of the list. The sum

of the lengths of adjacency lists is equal to the twice of the number

of edges present in an undirected graph.

Consider the directed graph shown in the following figure and check

the adjacency list representation of the graph.

Graph Representation

In a directed graph, the sum of lengths of all the adjacency lists is

equal to the number of edges present in the graph.

In the case of weighted directed graph, each node contains an extra

field that is called the weight of the node. The adjacency list

representation of a directed graph is shown in the following figure.

Graph Representation

Graph Representation Examples

Graph Representation Examples

Graph Representation Examples

43

 Multiclass are lists where nodes may be shared among

several other lists

44

 The node structure of such a list can be represented as

follows :

45

46

 Inverse adjacency lists is a set of lists that

contain one list for vertex

 Each list contains a node per vertex adjacent

to the vertex it represents

47

Graph Representation

Degree of Vertex in Graph
Degree of Vertex in a Directed Graph

In a directed graph, each vertex has an indegree and an outdegree.

Indegree of a Graph

Indegree of vertex V is the number of edges which are coming into

the vertex V.

Notation − deg−(V).

Outdegree of a Graph

Outdegree of vertex V is the number of edges which are going out

from the vertex V.

Notation − deg+(V).

Degree of Vertex in Graph

In-degree :

In-degree of a vertex is the number of

edges coming to the vertex.

In-degree of vertex 0 = 0

In-degree of vertex 1 = 1

In-degree of vertex 2 = 1

In-degree of vertex 3 = 3

In-degree of vertex 4 = 2

Out-degree

Out-degree of a vertex is the number edges

which are coming out from the vertex.

Out-degree of vertex 0 = 3

Out-degree of vertex 1 = 2

Out-degree of vertex 2 = 1

Out-degree of vertex 3 = 1

Out-degree of vertex 4 = 0

Degree of Vertex in Graph

Vertex Indegree Outdegree

a 1 2

b 2 0

c 2 1

d 1 1

e 1 1

f 1 1

g 0 2

Graph Traversal Algorithms
Traversing the graph means examining all the nodes and vertices of

the graph. There are two standard methods by using which, we can

traverse the graphs. Lets discuss each one of them in detail.

1. Breadth First Search

2. Depth First Search

BFS Algorithms
1. Breadth-first search is a graph traversal algorithm that starts

traversing the graph from the root node and explores all the

neighboring nodes. Then, it selects the nearest node and

explores all the unvisited nodes. While using BFS for traversal,

any node in the graph can be considered as the root node.

2. BFS is the most commonly used approach. It is a recursive

algorithm to search all the vertices of a tree or graph data

structure. BFS puts every vertex of the graph into two categories

- visited and non-visited. It selects a single node in a graph and,

after that, visits all the nodes adjacent to the selected node

BFS Algorithms

BFS Algorithms

BFS Algorithms
As in the example given above, BFS algorithm

traverses from A to B to E to F first then to C and

G lastly to D. It employs the following rules.

• Rule 1 − Visit the adjacent unvisited vertex.

Mark it as visited. Display it. Insert it in a queue.

• Rule 2 − If no adjacent vertex is found,

remove the first vertex from the queue.

• Rule 3 − Repeat Rule 1 and Rule 2 until the

queue is empty.

BFS Algorithms
Step 1: SET STATUS = 1 (ready state)

for each node in G

Step 2: Enqueue the starting node A

and set its STATUS = 2

(waiting state)

Step 3: Repeat Steps 4 and 5 until

QUEUE is empty

Step 4: Dequeue a node N. Process it

and set its STATUS = 3

(processed state).

Step 5: Enqueue all the neighbours of

N that are in the ready state

(whose STATUS = 1) and set

their STATUS = 2

(waiting state)

[END OF LOOP]

Step 6: EXIT

BFS Algorithms
Rule 1 − Visit the adjacent unvisited vertex. Mark it as

visited. Display it. Insert it in a queue.

Rule 2 − If no adjacent vertex is found, remove the first

vertex from the queue.

Rule 3 − Repeat Rule 1 and Rule 2 until the queue is

empty.

BFS Algorithms
Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Enqueue the starting node A and set its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until QUEUE is empty

Step 4: Dequeue a node N. Process it and set its STATUS = 3 (processed

state).

Step 5: Enqueue all the neighbours of N that are in the ready state (whose

STATUS = 1) and set

their STATUS = 2

(waiting state)

[END OF LOOP]

Example of BFS Algorithms

Complexity of BFS Algorithms

The time complexity of the BFS algorithm is

represented in the form of O(V + E), where V is the

number of nodes and E is the number of edges.

The space complexity of the algorithm is O(V).

Advantages and Disadvantages
of BFS

• Advantages :

1. A BFS will find the shortest path between the starting point and any other

reachable node.

2. A depth-first search will not necessarily find the shortest path.

• Disadvantages :

A BFS on a binary tree generally requires more memory than a DFS.

Application of BFS Algorithms
1. BFS can be used to find the neighboring locations from a given source

location.

2. In a peer-to-peer network, BFS algorithm can be used as a traversal

method to find all the neighboring nodes. Most torrent clients, such as

BitTorrent, uTorrent, etc. employ this process to find "seeds" and

"peers" in the network.

3. BFS is used to determine the shortest path and minimum spanning tree.

4. BFS is also used in Cheney's technique to duplicate the garbage

collection.

5. It can be used in ford-Fulkerson method to compute the maximum flow

in a flow network.

Application of BFS Algorithms

1. To build index by search index

2. For GPS navigation

3. Path finding algorithms

4. Cycle detection in an undirected graph

5. In minimum spanning tree

Application of BFS Algorithms

Depth First Search (DFS)

Depth first search (DFS) algorithm starts with the initial node of the graph

G, and then goes to deeper and deeper until we find the goal node or the

node which has no children. The algorithm, then backtracks from the dead

end towards the most recent node that is yet to be completely unexplored.

The data structure which is being used in DFS is stack. The process is

similar to BFS algorithm. In DFS, the edges that leads to an unvisited node

are called discovery edges while the edges that leads to an already visited

node are called block edges.

DFS Algorithms
Depth First Search (DFS) algorithm traverses a

graph in a depthward motion and uses a stack to

remember to get the next vertex to start a search,

when a dead end occurs in any iteration.

• As in the example given above, DFS

algorithm traverses from A to B to C to D first

then to E, then to F and lastly to G. It employs the

following rules.

• Rule 1 − Visit the adjacent unvisited vertex.

Mark it as visited. Display it. Push it in a stack.

• Rule 2 − If no adjacent vertex is found, pop

up a vertex from the stack. (It will pop up all the

vertices from the stack, which do not have

adjacent vertices.)

• Rule 3 − Repeat Rule 1 and Rule 2 until the

stack is empty

DFS Algorithms

Traversing the above graph in BFS fashion would result from A -> B -> E -

> F -> C -> G -> D. The algorithm starts from node A and traverses all its

child nodes. As soon as it encounters B, it seems that it has further child

nodes. So, the child nodes of B are traversed before proceeding to the next

child node of A

DFS Algorithms
Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting

state)

Step 3: Repeat Steps 4 and 5 until STACK is empty

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state)

Step 5: Push on the stack all the neighbours of N that are in the ready state

(whose STATUS = 1) and set their

STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

DFS Algorithms
Depth first search (DFS) algorithm starts with the initial node of the

graph G, and then goes to deeper and deeper until we find the goal

node or the node which has no children. The algorithm, then

backtracks from the dead end towards the most recent node that is

yet to be completely unexplored.

The data structure which is being used in DFS is stack. The process

is similar to BFS algorithm. In DFS, the edges that leads to an

unvisited node are called discovery edges while the edges that leads

to an already visited node are called block edges.

DFS Algorithms
DFS is an algorithm for finding or traversing graphs or trees

in depth-ward direction. The execution of the algorithm

begins at the root node and explores each branch before

backtracking. It uses a stack data structure to remember, to

get the subsequent vertex, and to start a search, whenever a

dead-end appears in any iteration.

The full form of DFS is Depth-first search.

DFS Algorithms

DFS Algorithms
Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set its STATUS = 2

(waiting state)

Step 3: Repeat Steps 4 and 5 until STACK is empty

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed

state)

Step 5: Push on the stack all the neighbours of N that are in the ready state

(whose STATUS = 1) and set their

STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

DFS Algorithms Example

The printing sequence of the graph will be :

H → A → D → F → B → C → G → E

Complexity of DFS Algorithms

Complexity of Depth First Search

The time complexity of the DFS algorithm is

represented in the form of O(V + E), where V is the

number of nodes and E is the number of edges.

The space complexity of the algorithm is O(V).

Example of DFS Algorithms

Advantages and Disadvantages of
DFS

• Advantages :

1. Depth-first search on a binary tree generally requires less memory than

breadth-first.

2. Depth-first search can be easily implemented with recursion..

• Disadvantages :

A DFS doesn't necessarily find the shortest path to a node, while breadth-

first search does.

Application of DFS Algorithms

1. For finding the path

2. To test if the graph is bipartite

3. For finding the strongly connected components of a

graph

4. For detecting cycles in a graph

BFS Vs DFS
sn BFS DFS

1
BFS finds the shortest path to the

destination.

DFS goes to the bottom of a subtree,

then backtracks.

2
The full form of BFS is Breadth-

First Search.

The full form of DFS is Depth First

Search.

3
It uses a queue to keep track of the

next location to visit.

It uses a stack to keep track of the

next location to visit.

4
BFS traverses according to tree

level.

DFS traverses according to tree

depth.

5 It is implemented using FIFO list. It is implemented using LIFO list.

6
It requires more memory as

compare to DFS.

It requires less memory as compare

to BFS.

BFS Vs DFS
sn BFS DFS

7
There is no need of

backtracking in BFS.

There is a need of backtracking

in DFS.

8
You can never be trapped into

finite loops.

You can be trapped into infinite

loops.

9

If you do not find any goal, you

may need to expand many

nodes before the solution is

found.

If you do not find any goal, the

leaf node backtracking may

occur.

Applications of Graph
1. In Computer science graphs are used to represent the flow of

computation.

2. Google maps uses graphs for building transportation systems.

3. In Facebook, users are considered to be the vertices and if they

are friends then there is an edge running between them.

4. Graphs are used to define the flow of computation.

5. Graphs are used to represent networks of communication.

6. Graphs are used to represent data organization.

7. Graph theory is used to find shortest path in road or a network.

Tree Vs Graph

Spanning Tree of Graph
A spanning tree is a subset of Graph G, which has all the vertices

covered with minimum possible number of edges. Hence, a

spanning tree does not have cycles and it cannot be disconnected..

Minimum Spanning Tree

Spanning Tree of Graph
• Spanning Tree Applications

1. Computer Network Routing Protocol

2. Cluster Analysis

3. Civil Network Planning

• Minimum Spanning tree Applications

1. To find paths in the map

2. To design networks like telecommunication networks, water

supply networks, and electrical grids.

GREEDY STRATEGIES

Greedy algorithm :

 An algorithm is designed to achieve optimum solution for a given

problem. In greedy algorithm approach, decisions are made from the

given solution domain. As being greedy, the closest solution that seems

to provide an optimum solution is chosen.

Example of greedy strategy :

1. Travelling Salesman Problem

2. Prim's Minimal Spanning Tree Algorithm

3. Kruskal's Minimal Spanning Tree Algorithm

4. Dijkstra's Minimal Spanning Tree Algorithm

5. Knapsack Problem

6. Job Scheduling Problem

GREEDY STRATEGIES

1. Minimum Spanning tree (Prims or Kruskal’s algorithms)

 The cost of the spanning tree is the sum of the weights of all the edges

in the tree. There can be many spanning trees. Minimum spanning tree is

the spanning tree where the cost is minimum among all the spanning

trees. There also can be many minimum spanning trees.

GREEDY STRATEGIES

1. Kruskal’s algorithms :

 Kruskal’s Algorithm builds the spanning tree by adding edges one by

one into a growing spanning tree. Kruskal's algorithm follows greedy

approach as in each iteration it finds an edge which has least weight and

add it to the growing spanning tree.

Algorithm Steps :

1. Sort the graph edges with respect to their weights.

2. Start adding edges to the MST from the edge with the smallest weight

until the edge of the largest weight.

3. Only add edges which doesn't form a cycle , edges which connect only

disconnected components.

GREEDY STRATEGIES

1. Kruskal’s algorithms :

• Kruskal's algorithm is a minimum spanning tree algorithm that

takes a graph as input and finds the subset of the edges of that

graph which

• form a tree that includes every vertex

• has the minimum sum of weights among all the trees that can

be formed from the graph

• Kruskal's Algorithm Complexity

• The time complexity Of Kruskal's Algorithm is: O(E log E).

GREEDY STRATEGIES

1. Kruskal’s algorithms :

The steps for implementing Kruskal's algorithm are as

follows:

1. Sort all the edges from low weight to high

2. Take the edge with the lowest weight and add it to the

spanning tree. If adding the edge created a cycle, then

reject this edge.

3. Keep adding edges until we reach all vertices.

GREEDY STRATEGIES

2. Kruskal’s algorithms : Example

 .

GREEDY STRATEGIES

2. Kruskal’s algorithms : Example

 .

1

GREEDY STRATEGIES

2. Kruskal’s algorithms : Example

 .

GREEDY STRATEGIES

2. Kruskal Algorithms : Example

GREEDY STRATEGIES

1. Kruskal Algorithms : Example

GREEDY STRATEGIES

1. Kruskal Algorithms :

Kruskal's Algorithm Applications

1. In order to layout electrical wiring

2. In computer network (LAN connection)

GREEDY STRATEGIES

1. Kruskal Algorithms :

GREEDY STRATEGIES

1. Kruskal Algorithms :

GREEDY STRATEGIES

2. Prims algorithm: Prim’s Algorithm also use Greedy approach to find

the minimum spanning tree. In Prim’s Algorithm we grow the spanning

tree from a starting position. Unlike an edge in Kruskal's, we

add vertex to the growing spanning tree in Prim's.

Algorithm Steps:

1. Initialize the minimum spanning tree with a vertex chosen at random.

2. Find all the edges that connect the tree to new vertices, find the

minimum and add it to the tree.

3. Keep repeating step 2 until we get a minimum spanning tree.

Prim's Algorithm Complexity

The time complexity of Prim's algorithm is O(E log V).

GREEDY STRATEGIES

2. Prims algorithm: Example

GREEDY STRATEGIES

1. Prims’ algorithms : Example

 .

1

GREEDY STRATEGIES

2. Prims algorithm: Example

GREEDY STRATEGIES

2. Prims algorithm: Example

GREEDY STRATEGIES

2. Prims algorithm: Example

GREEDY STRATEGIES

2. Prims algorithm: Example

GREEDY STRATEGIES

2. Prims algorithm: Example

Kruska's algorithm.

GREEDY STRATEGIES

2. Prims algorithm:

Prim's Algorithm Application

1. Laying cables of electrical wiring

2. In network designed

3. To make protocols in network cycles

Advantages of Disadvantages of
Greedy approach

Advantages :

• The algorithm is easier to describe.

• This algorithm can perform better than other algorithms

(but, not in all cases).

Disadvantages :

• The greedy algorithm doesn't always produce the optimal

solution.

Applications of Greedy Algorithms

• It is used in finding the shortest path.

• It is used to find the minimum spanning tree using the

prim's algorithm or the Kruskal's algorithm.

• It is used in a job sequencing with a deadline.

• This algorithm is also used to solve the fractional

knapsack problem.

Prim’s Vs Kruskal Algorithms

Single
Source

Shorstest
Path

Dijkstra’s Algorithms

• Dijkstra's algorithm allows us to find the shortest path

between any two vertices of a graph.

• It differs from the minimum spanning tree because the

shortest distance between two vertices might not include

all the vertices of the graph.

How Dijkstra’s Algorithms works?

• Dijkstra's Algorithm works on the basis that any subpath

B -> D of the shortest path A -> D between vertices A

and D is also the shortest path between vertices B and D.

How Dijkstra’s Algorithms works?

• Djikstra used this property in the opposite direction i.e

we overestimate the distance of each vertex from the

starting vertex. Then we visit each node and its

neighbors to find the shortest subpath to those

neighbors.

• The algorithm uses a greedy approach in the sense that

we find the next best solution hoping that the end result

is the best solution for the whole problem.

Algorithms of Dijkstra’s Algorithms

Algorithms of Dijkstra’s Algorithms

function dijkstra(G, S)

 for each vertex V in G

 distance[V] <- infinite

 previous[V] <- NULL

 If V != S, add V to Priority Queue Q

 distance[S] <- 0

 while Q IS NOT EMPTY

 U <- Extract MIN from Q

 for each unvisited neighbour V of U

 tempDistance <- distance[U] + edge_weight(U, V)

 if tempDistance < distance[V]

 distance[V] <- tempDistance

 previous[V] <- U

 return distance[], previous[]

Example of Dijkstra’s Algorithms

1.Start with a weighted graph

• Example of Dijkstra's algorithm

It is easier to start with an example and then think about the

algorithm.

Example of Dijkstra’s Algorithms

Choose a starting vertex and assign infinity path values

to all other devices

• Example of Dijkstra's algorithm

Example of Dijkstra’s Algorithms

Go to each vertex and update its path length

• Example of Dijkstra's algorithm

Example of Dijkstra’s Algorithms

If the path length of the adjacent vertex is lesser than

new path length, don't update it

Example of Dijkstra’s Algorithms

Avoid updating path lengths of already visited vertices

Example of Dijkstra’s Algorithms

After each iteration, we pick the unvisited vertex with

the least path length. So we choose 5 before 7

Example of Dijkstra’s Algorithms

Notice how the rightmost vertex has its path length

updated twice

Example of Dijkstra’s Algorithms

Repeat until all the vertices have been visited

Example of Dijkstra’s Algorithms

https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-

visual-introduction/

https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/

Example of Dijkstra’s Algorithms

ANSWERs : https://www.freecodecamp.org/news/dijkstras-shortest-path-

algorithm-visual-introduction/

https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/https:/www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/

Example of Dijkstra’s Algorithms

Time Complexity Dijkstra’s Algorithms

• Time Complexity: O(E Log V)

where, E is the number of edges and V is the number of

vertices.

• Space Complexity: O(V)

Applications of Dijkstra’s Algorithms

• To find the shortest path

• In social networking applications

• In a telephone network

• To find the locations in the map

Example of Dijkstra’s Algorithms

Example of Dijkstra’s Algorithms

All Pair
Shorstest

Path

Floyd-Warshall Algorithms

• Floyd Warshall Algorithm is a famous algorithm.

• It is used to solve All Pairs Shortest Path Problem.

• It computes the shortest path between every pair of

vertices of the given graph.

• Floyd Warshall Algorithm is an example of dynamic

programming approach.

Floyd-Warshall Algorithms

n = no of vertices

A = matrix of dimension n*n

for k = 1 to n

 for i = 1 to n

 for j = 1 to n

 Ak[i, j] = min (Ak-1[i, j], Ak-1[i, k] + Ak-1[k, j])

return A

Sample e.g. : https://www.gatevidyalay.com/floyd-warshall-algorithm-

shortest-path-algorithm/

https://www.gatevidyalay.com/floyd-warshall-algorithm-shortest-path-algorithm/
https://www.gatevidyalay.com/floyd-warshall-algorithm-shortest-path-algorithm/
https://www.gatevidyalay.com/floyd-warshall-algorithm-shortest-path-algorithm/
https://www.gatevidyalay.com/floyd-warshall-algorithm-shortest-path-algorithm/
https://www.gatevidyalay.com/floyd-warshall-algorithm-shortest-path-algorithm/
https://www.gatevidyalay.com/floyd-warshall-algorithm-shortest-path-algorithm/
https://www.gatevidyalay.com/floyd-warshall-algorithm-shortest-path-algorithm/
https://www.gatevidyalay.com/floyd-warshall-algorithm-shortest-path-algorithm/
https://www.gatevidyalay.com/floyd-warshall-algorithm-shortest-path-algorithm/
https://www.gatevidyalay.com/floyd-warshall-algorithm-shortest-path-algorithm/
https://www.gatevidyalay.com/floyd-warshall-algorithm-shortest-path-algorithm/

Example of Floyd-Warshall Algorithms

Initial graph

Example : https://www.programiz.com/dsa/floyd-warshall-algorithm

https://www.programiz.com/dsa/floyd-warshall-algorithm
https://www.programiz.com/dsa/floyd-warshall-algorithm
https://www.programiz.com/dsa/floyd-warshall-algorithm
https://www.programiz.com/dsa/floyd-warshall-algorithm
https://www.programiz.com/dsa/floyd-warshall-algorithm
https://www.programiz.com/dsa/floyd-warshall-algorithm

Example of Floyd-Warshall Algorithms

Fill each cell with the distance between ith and jth vertex

Example of Floyd-Warshall Algorithms

Calculate the distance from the source vertex to

destination vertex through this vertex k

Example of Floyd-Warshall Algorithms

Calculate the distance from the source vertex to

destination vertex through this vertex 2

Example of Floyd-Warshall Algorithms

Calculate the distance from the source vertex to

destination vertex through this vertex 3

Example of Floyd-Warshall Algorithms

Calculate the distance from the source vertex to

destination vertex through this vertex 4

A4 gives the shortest path between each pair of vertices.

Floyd-Warshall Algorithms

• Advantages :

1. It is extremely simple.

2. It is easy to implement.

Floyd-Warshall Algorithms

• Time Complexity

There are three loops. Each loop has constant complexities.

So, the time complexity of the Floyd-Warshall algorithm is

O(n
3
).

• Space Complexity

The space complexity of the Floyd-Warshall algorithm is

O(n
2
).

Applications of Floyd-Warshall
Algorithms

1. To find the shortest path is a directed graph

2. To find the transitive closure of directed

graphs

3. To find the Inversion of real matrices

4. For testing whether an undirected graph is

bipartite

5. https://youtu.be/NdBHw5mqIZE https://youtu.be/Gc4mWrmJBsw

https://youtu.be/NdBHw5mqIZE
https://youtu.be/NdBHw5mqIZE
https://youtu.be/NdBHw5mqIZE
https://youtu.be/NdBHw5mqIZE
https://youtu.be/NdBHw5mqIZE
https://youtu.be/NdBHw5mqIZE
https://youtu.be/NdBHw5mqIZE
https://youtu.be/Gc4mWrmJBsw
https://youtu.be/Gc4mWrmJBsw
https://youtu.be/Gc4mWrmJBsw
https://youtu.be/Gc4mWrmJBsw
https://youtu.be/Gc4mWrmJBsw
https://youtu.be/Gc4mWrmJBsw
https://youtu.be/Gc4mWrmJBsw

Example of Floyd-Warshall Algorithms

Example of Floyd-Warshall Algorithms

Topological
Ordering /

Sort

Topological Sort/Ordering

• Topological Sorting is possible if and only if the graph is

a Directed Acyclic Graph.

• There may exist multiple different topological orderings

for a given directed acyclic graph.

Topological Sort/Ordering

Find the number of different topological orderings possible for the

given graph-

Step-01:

 Write in-degree of each vertex-

Topological Sort/Ordering

Step-02:

• Vertex-A has the least in-degree.

• So, remove vertex-A and its associated edges.

• Now, update the in-degree of other vertices.

Topological Sort/Ordering

Step-03:

• Vertex-B has the least in-degree.

• So, remove vertex-B and its associated edges.

• Now, update the in-degree of other vertices.

Topological Sort/Ordering

Step-04:

• There are two vertices with the least in-degree. So, following 2

cases are possible-

In case-01,

1. Remove vertex-C and its associated edges.

2. Then, update the in-degree of other vertices.

In case-02,

1. Remove vertex-D and its associated edges.

2. Then, update the in-degree of other vertices.

Topological Sort/Ordering

Step-04:

Topological Sort/Ordering

Step-05:

• Now, the above two cases are continued separately in the similar

manner.

In case-01,

1. Remove vertex-D since it has the least in-degree.

2. Then, remove the remaining vertex-E.

• In case-02,

1. Remove vertex-C since it has the least in-degree.

2. Then, remove the remaining vertex-E.

Topological Sort/Ordering

Conclusion-

For the given graph, following 2 different topological

orderings are possible-

A B C D E

A B D C E

Topological Sort/Ordering

Folowing are the 4 different Topological order :

1 2 3 4 5 6

1 2 3 4 6 5

1 3 2 4 5 6

1 3 2 4 6 5

https://www.gatevidyalay.com/topological-sort-topological-sorting/

https://www.gatevidyalay.com/topological-sort-topological-sorting/
https://www.gatevidyalay.com/topological-sort-topological-sorting/
https://www.gatevidyalay.com/topological-sort-topological-sorting/
https://www.gatevidyalay.com/topological-sort-topological-sorting/
https://www.gatevidyalay.com/topological-sort-topological-sorting/
https://www.gatevidyalay.com/topological-sort-topological-sorting/
https://www.gatevidyalay.com/topological-sort-topological-sorting/

Applications of Topological
Sort/Ordering

• Few important applications of topological sort are-

1. Scheduling jobs from the given dependencies among jobs

2. Instruction Scheduling

3. Determining the order of compilation tasks to perform in

makefiles

4. Data Serialization

AOE Network and Critical Path

• AOE(Activity on edge network): in a weighted directed

graph representing the project, the vertex represents the

event, the directed edge represents the activity, and the

weight on the edge represents the duration of the activity.

Such a directed graph is called the edge represents the

activity network, or AOE network for short

• The vertices in the AOE network without edges are called

starting points (or source points); Points without edges are

called endpoints (or sinks)

AOE Network and Critical Path

• Properties of AOE networks

1. Only after the event represented by a vertex occurs, the

activity starting from the vertex can start;

2. The event represented by a vertex can occur only when all

activities entering a vertex are completed.

• AOE network can solve the following problems

1. At least how long will it take to complete the whole

project

2. What activities should be accelerated to shorten the time

required to complete the project

AOE Network and Critical Path

• Key activities

• Critical path: there may be more than one activity that

takes the longest time, so the most important thing is to

find the activity that cannot be delayed is called critical

activity

• If the time of an activity is shortened and the overall end

time cannot be changed, the activity is not a key activity; If

you shorten the time of an activity, the activity is the key

activity.

AOE Network and Critical Path

THANK YOU!!!
My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

https://anandgharu.wordpress.com/

