
“TREE”

Prepared By

Prof. Anand N. Gharu
(Assistant Professor)

 Computer Dept.

01 February 2024

.

CLASS : SE COMPUTER 2019

SUBJECT : DSA (SEM-II)

UNIT : II

Note: The material to prepare this presentation has been taken from internet and are generated only

for students reference and not for commercial use. 1

SYLLABUS

SYLLABUS

Tree- basic terminology, General tree and its representation,

representation using sequential and linked organization, Binary

tree- properties, converting tree to binary tree, binary tree

traversals(recursive and non-recursive)- inorder, preorder, post

order, depth first and breadth first, Operations on binary tree.

Huffman Tree (Concept and Use), Binary Search Tree (BST), BST

operations, Threaded binary search tree- concepts, threading,

insertion and deletion of nodes in in-order threaded binary search

tree, in order traversal of in-order threaded binary search tree.

UNIT-I I

TREE

 “A tree is a nonlinear hierarchical data

structure that consists of nodes connected by

edges.”

TERMINOLOGIES IN TREE

Why Tree Data Structure?
Other data structures such as arrays, linked list, stack, and

queue are linear data structures that store data sequentially.

In order to perform any operation in a linear data structure,

the time complexity increases with the increase in the data

size. But, it is not acceptable in today's computational world.

Different tree data structures allow quicker and easier access

to the data as it is a non-linear data structure.

Terminologies of Tree
• Root :

It is the topmost node of a tree.

• Edge :

It is the link between any two nodes.

• Node :

A node is an entity that contains a key or value and pointers

to its child nodes.

Terminologies of Tree

Terminologies of Tree
• Child node: If the node is a descendant of any node, then

the node is known as a child node.

• Parent: If the node contains any sub-node, then that node

is said to be the parent of that sub-node.

• Sibling: The nodes that have the same parent are known

as siblings.

Terminologies of Tree
• Leaf − The node which does not have any child node is

called the leaf node.

• Subtree − Subtree represents the descendants of a node.

• Path − Path refers to the sequence of nodes along the

edges of a tree

Terminologies of Tree
• Traversing − Traversing means passing through nodes in

a specific order.

• Levels − Level of a node represents the generation of a

node. If the root node is at level 0, then its next child node

is at level 1, its grandchild is at level 2, and so on.

• keys − Key represents a value of a node based on which a

search operation is to be carried out for a node.

Terminologies of Tree
Leaf/External node: Node with no children.

Internal node:

The node having at least a child node is called an internal

node

• Height of a Node :

The height of a node is the number of edges from the node

to the deepest leaf (ie. the longest path from the node to a

leaf node).

Terminologies of Tree
The depth of a node is the number of edges from the root

to the node.

• Height of a Tree :

The height of a Tree is the height of the root node or the

depth of the deepest node.

Terminologies of Tree
• Degree of a Node :
The degree of a node is the total number of branches of that
node.

• Forest :
A collection of disjoint trees is called a forest.
You can create a forest by cutting the root of a tree.

Applications of Tree
• Binary Search Tree (BST) is used to check whether

elements present or not.

• Heap is a type of tree that is used to heap sort.

• Tries are the modified version of the tree used in modem

routing to information of the router.

• The widespread database uses B-tree.

• Compilers use syntax trees to check every syntax of a

program.

Advantages of Tree

1. Trees reflect structural relationships in the data.

2. Trees are used to represent hierarchies.

3. Trees provide an efficient insertion and searching.

4. Trees are very flexible data, allowing to move

subtrees around with minimum effort.

Types of Tree
• General Tree

• Binary Tree

• Binary Search Tree

• AVL Tree

• B-Tree

General Tree
• General Tree

• The general tree is the type of tree where there are no
constraints on the hierarchical structure.

• Properties

• The general tree follows all properties of the tree data structure.

• A node can have any number of nodes.

Binary Tree
• A binary tree has the following properties:

• Properties

• Follows all properties of the tree data structure.

• Binary trees can have at most two child nodes.

• These two children are called the left child and the right child.

Binary Tree
• A binary tree has the following properties:

• At each level of i, the maximum number of nodes is 2i.

• The height of the tree is defined as the longest path from the root

node to the leaf node. The tree which is shown above has a height

equal to 3. Therefore, the maximum number of nodes at height 3 is

equal to (1+2+4+8) = 15. In general, the maximum number of nodes

possible at height h is (20 + 21 + 22+….2h) = 2h+1 -1.

• The minimum number of nodes possible at height h is equal to h+1.

• If the number of nodes is minimum, then the height of the tree

would be maximum. Conversely, if the number of nodes is

maximum, then the height of the tree would be minimum

Binary Tree Representation
A node of a binary tree is represented by a structure containing a data

part and two pointers to other structures of the same type.

struct node

{

 int data;

 struct node *left;

 struct node *right;

};

Types of Binary Tree
• Full Binary tree: It is a special type of binary tree. In this tree data

structure, every parent node or an internal node has either two

children or no child nodes.

• .

Types of Binary Tree
• Perfect binary tree: In this type of tree data structure, every

internal node has exactly two child nodes and all the leaf nodes are

at the same level.

• .

Binary Tree
• Complete binary tree: It resembles that of the full binary tree with

a few differences.

1. Every level is completely filled.

2. The leaf nodes lean towards the left of the tree.

3. It is not a requirement for the last leaf node to have the right sibling,

i.e. a complete binary tree doesn’t have to be a full binary tree.

Binary Tree
• Skewed binary tree: It is a pathological or degenerate tree where

the tree is dominated by either the left nodes or the right nodes.

Therefore, there are two types of skewed binary trees, i.e. left-

skewed or the right-skewed binary tree.

Binary Tree
• Balanced binary tree: The difference between the height of the left

and right sub tree for each node is either 0 or 1.

Static Binary Tree Representation :
• Array Representation :

• Binary tree using array represents a node which is numbered sequentially level

by level from left to right. Even empty nodes are numbered.

• Array index is a value in tree nodes and array value gives to the parent node of

that particular index or node. Value of the root node index is always -1 as there

is no parent for root. When the data item of the tree is sorted in an array, the

number appearing against the node will work as indexes of the node in an

array.

• Location number of an array is used to store the size of the tree. The first index

of an array that is '0', stores the total number of nodes. All nodes are numbered

from left to right level by level from top to bottom. In a tree, each node having

an index i is put into the array as its i th element.

Binary Tree Representation using Array

Dynamic -Binary Tree Representation
Linked representation :

Binary trees in linked representation are stored in the memory

as linked lists. These lists have nodes that aren’t stored at

adjacent or neighboring memory locations and are linked to

each other through the parent-child relationship associated

with trees.

In this representation, each node has three different parts –

• pointer that points towards the right node,

• pointer that points towards the left node,

• data element.

Binary Tree Representation

Binary Tree Representation

Binary Tree Representation
Linked representation :

This is the more common representation. All binary trees

consist of a root pointer that points in the direction of the

root node. When you see a root node pointing towards null or

0, you should know that you are dealing with an empty binary

tree. The right and left pointers store the address of the right

and left children of the tree

Operations of Binary Tree
Searching: For searching element 2, we have to traverse all

elements (assuming we do breadth first traversal). Therefore,

searching in binary tree has worst case complexity of O(n).

Insertion: For inserting element as left child of 2, we have to

traverse all elements. Therefore, insertion in binary tree has

worst case complexity of O(n).

Deletion: For deletion of element 2, we have to traverse all

elements to find 2 (assuming we do breadth first traversal).

Therefore, deletion in binary tree has worst case complexity of

O(n).

Binary Tree Examples

Binary Tree Examples

Advantages and Disadvantages

Binary Search Tree
• Binary search tree is a data structure that quickly

allows us to maintain a sorted list of numbers.

1. It is called a binary tree because each tree node has a

maximum of two children.

2. It is called a search tree because it can be used to search

for the presence of a number in O(log(n)) time

Binary Search Tree
• Properties

• Follows all properties of the tree data structure.

1. The value of the key of the left sub-tree is less than the

value of its parent (root) node's key.

2. The value of the key of the right sub-tree is greater than or

equal to the value of its parent (root) node's key.

3. Both subtrees of each node are also BSTs i.e. they have the

above two properties

Binary Search Tree
• The binary tree on the right isn't a binary search tree

because the right subtree of the node "3" contains a
value smaller than it.

Operation of Binary Search Tree
• Insert − Inserts an element in a tree/create a tree.

• Search − Searches an element in a tree.

• Preorder Traversal − Traverses a tree in a pre-order

manner.

• Inorder Traversal − Traverses a tree in an in-order
manner.

• Postorder Traversal − Traverses a tree in a post-order
manner.

Binary Search Tree

Binary Search Tree

Binary Search Tree
Create the binary search tree using the following data elements.

15, 11, 13, 8, 9, 17, 16, 18

Binary Search Tree

Binary Search Tree
Create the binary search tree using the following data elements.

43, 10, 79, 90, 12, 54, 11, 9, 50

Operation of Binary Search Tree
1. Create: creates an empty tree.

2. Insert: insert a node in the tree.

3. Search: Searches for a node in the tree.

4. Delete: deletes a node from the tree.

5. Inorder: in-order traversal of the tree.

6. Preorder: pre-order traversal of the tree.

7. Postorder: post-order traversal of the tree

Operation of Binary Search Tree
1. Search :

Operation of Binary Search Tree
1. Search :

Algorithm:

If root == NULL

 return NULL;

If number == root->data

 return root->data;

If number < root->data

 return search(root->left)

If number > root->data

 return search(root->right)

Operation of Binary Search Tree

Operation of Binary Search Tree
2. Insert :

Algorithm:

If node == NULL

 return createNode(data)

if (data < node->data)

 node->left = insert(node->left, data);

else if (data > node->data)

 node->right = insert(node->right, data);

return node;

Operation of Binary Search Tree

Operation of Binary Search Tree

Operation of Binary Search Tree

Operation of Binary Search Tree

Operation of Binary Search Tree
3. Delete :

Algorithm:

Case 1: Deleting a leaf node

We use the following steps to delete a leaf node from BST...

Step 1 - Find the node to be deleted using search operation

Step 2 - Delete the node using free function (If it is a leaf) and

terminate the function.

Operation of Binary Search Tree
3. Delete :

Algorithm:

Case 2: Deleting a node with one child

We use the following steps to delete a node with one child from

BST...

Step 1 - Find the node to be deleted using search operation

Step 2 - If it has only one child then create a link between its

parent node and child node.

Step 3 - Delete the node using free function and terminate the

function.

Operation of Binary Search Tree
3. Delete :

Algorithm:

Case 3: Deleting a node with two children

We use the following steps to delete a node with two children

from BST...

Step 1 - Find the node to be deleted using search operation

Step 2 - If it has two children, then find the largest node in its left

subtree (OR) the smallest node in its right subtree.

Step 3 - Swap both deleting node and node which is found in the

above step.

Step 4 - Then check whether deleting node came to case 1 or case

2 or else goto step 2

Operation of Binary Search Tree
3. Delete :

Algorithm:

Case 3: Deleting a node with two children

We use the following steps to delete a node with two children

from BST...

Step 5 - If it comes to case 1, then delete using case 1 logic.

Step 6- If it comes to case 2, then delete using case 2 logic.

Step 7 - Repeat the same process until the node is deleted from

the tree.

59

Convert a Generic Tree (N-array Tree) to

Binary Tree
Following are the rules to convert a Generic(N-array tree) to

binary tree :

1. The root of the Binary Tree is the Root of the Generic

Tree.

2. The left child of a node in the Generic Tree is the Left

child of that node in the Binary Tree.

3. The right sibling of any node in the Generic Tree is the

Right child of that node in the Binary Tree.

60

Convert a Generic Tree(N-array Tree) to Binary Tree

Examples:

Convert the following Generic Tree to Binary Tree:

61

Convert a Generic Tree(N-array Tree) to Binary Tree

Below is the Binary Tree of the above Generic Tree:

62

Convert a Generic Tree(N-array Tree) to Binary Tree

Note: If the parent node has only the right child in the

general tree then it becomes the rightmost child node of the

last node following the parent node in the binary tree.

In the above example, if node B has the right child node L

then in binary tree representation L would be the right child

of node D.

63

Convert a Generic Tree(N-array Tree) to Binary Tree

Examples:

Convert the following Generic Tree to Binary Tree:

64

Convert a Generic Tree(N-array Tree) to Binary Tree

Examples:

Convert the following Generic Tree to Binary Tree:

65

Convert a Generic Tree(N-array Tree) to Binary Tree

Examples:

Convert the following Generic Tree to Binary Tree:

66

Convert a Generic Tree(N-array Tree) to Binary Tree

Examples:

67

Convert a Generic Tree(N-array Tree) to Binary Tree

Examples:

68

Convert a Generic Tree(N-array Tree) to Binary Tree

Examples:

69

Convert a Generic Tree(N-array Tree) to Binary Tree

Examples:

70

Convert a Generic Tree(N-array Tree) to Binary Tree

Examples:

Tree Traversal
Traversal of the tree in data structures is a process of visiting each node

and prints their value. There are three ways to traverse tree data

structure.

1. Pre-order Traversal

2. In-Order Traversal

3. Post-order Traversal

Tree Traversal
Tree traversal means traversing or visiting each node of a tree.

Linear data structures like Stack, Queue, linked list have only

one way for traversing, whereas the tree has various ways to

traverse or visit each node. The following are the three different

ways of traversal:

1. Inorder traversal

2. Preorder traversal

3. Postorder traversal

Inorder Traversal
In the in-order traversal, the left subtree is visited first, then the root, and

later the right subtree.

Algorithm:

Step 1- Recursively traverse the left subtree

Step 2- Visit root node

Step 3- Recursively traverse right subtree

Pre-order Traversal
In pre-order traversal, it visits the root node first, then the left subtree,

and lastly right subtree.

Algorithm:

Step 1- Visit root node

Step 2- Recursively traverse the left subtree

Step 3- Recursively traverse right subtree

Post-order Traversal
It visits the left subtree first in post-order traversal, then the right subtree,

and finally the root node.

Algorithm:

Step 1- Recursively traverse the left subtree

Step 2- Recursively traverse right subtree

Step 3- Visit root node

Tree Traversal Example

Tree Traversal Example

Tree Traversal Example

Preorder Traversal - 100 , 20 , 10 , 30 , 200 , 150 , 300

 Inorder Traversal- 10 , 20 , 30 , 100 , 150 , 200 , 300

 Postorder Traversal : 10 , 30 , 20 , 150 , 300 , 200 , 100

Tree Traversal Example

Tree Traversal Example

Tree Traversal Example

Tree Traversal Example

Tree Traversal Example

Tree Traversal Example
int inOrder[] = {20, 30, 35, 40, 45, 50, 55, 60, 70};
int postOrder[] = {20, 35, 30, 45, 40, 55, 70, 60, 50};

Question:

Two traversals are given as input,

?

https://javabypatel.blogspot.com/2016/05/construct-binary-tree-from-inorder-and-post-order-traversals.html

Tree Traversal Example
Example Input:

Postorder = [10, 18, 9, 22, 4]

Inorder = [10, 4, 18, 22, 9]

Example :

preorder = [1,2,4,5,3,6,7],

postorder = [4,5,2,6,7,3,1]

86

Inorder Traversal (recursive version)

void inorder(tree_pointer ptr)

/* inorder tree traversal */

{

 if (ptr) {

 inorder(ptr->left_child);

 printf(“%d”, ptr->data);

 indorder(ptr->right_child);

 }

}

A / B * C * D + E

87

Preorder Traversal (recursive version)

void preorder(tree_pointer ptr)

/* preorder tree traversal */

{

 if (ptr) {

 printf(“%d”, ptr->data);

 preorder(ptr->left_child);

 predorder(ptr->right_child);

 }

}

+ * * / A B C D E

88

Postorder Traversal (recursive version)

void postorder(tree_pointer ptr)

/* postorder tree traversal */

{

 if (ptr) {

 postorder(ptr->left_child);

 postdorder(ptr->right_child);

 printf(“%d”, ptr->data);

 }

}

A B / C * D * E +

DFS Algorithms
Depth first search (DFS) algorithm starts with the initial node of the

graph G, and then goes to deeper and deeper until we find the goal

node or the node which has no children. The algorithm, then

backtracks from the dead end towards the most recent node that is

yet to be completely unexplored.

The data structure which is being used in DFS is stack. The process

is similar to BFS algorithm. In DFS, the edges that leads to an

unvisited node are called discovery edges while the edges that leads

to an already visited node are called block edges.

DFS Algorithms
DFS is an algorithm for finding or traversing graphs or trees

in depth-ward direction. The execution of the algorithm

begins at the root node and explores each branch before

backtracking. It uses a stack data structure to remember, to

get the subsequent vertex, and to start a search, whenever a

dead-end appears in any iteration.

The full form of DFS is Depth-first search.

DFS Algorithms
The step by step process to implement the DFS traversal

is given as follows -

1. First, create a stack with the total number of vertices in the

graph.

2. Now, choose any vertex as the starting point of traversal,

and push that vertex into the stack.

3. After that, push a non-visited vertex (adjacent to the vertex

on the top of the stack) to the top of the stack.

4. Now, repeat steps 3 and 4 until no vertices are left to visit

from the vertex on the stack's top.

5. If no vertex is left, go back and pop a vertex from the stack.

6. Repeat steps 2, 3, and 4 until the stack is empty.

DFS Algorithms

DFS Algorithms
Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set its STATUS = 2

(waiting state)

Step 3: Repeat Steps 4 and 5 until STACK is empty

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed

state)

Step 5: Push on the stack all the neighbours of N that are in the ready state

(whose STATUS = 1) and set their

STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

DFS Algorithms Example

The printing sequence of the graph will be :

H → A → D → F → B → C → G → E

Complexity of DFS Algorithms

Complexity of Depth First Search

The time complexity of the DFS algorithm is

represented in the form of O(V + E), where V is the

number of nodes and E is the number of edges.

The space complexity of the algorithm is O(V).

Application of DFS Algorithms

1. DFS algorithm can be used to implement the

topological sorting.

2. It can be used to find the paths between two vertices.

3. It can also be used to detect cycles in the graph.

4. DFS algorithm is also used for one solution puzzles.

5. DFS is used to determine if a graph is bipartite or

not.

Example of DFS Algorithms

BFS Algorithms
1. Breadth-first search is a graph traversal algorithm that starts

traversing the graph from the root node and explores all the

neighboring nodes. Then, it selects the nearest node and

explores all the unvisited nodes. While using BFS for traversal,

any node in the graph can be considered as the root node.

2. BFS is the most commonly used approach. It is a recursive

algorithm to search all the vertices of a tree or graph data

structure. BFS puts every vertex of the graph into two categories

- visited and non-visited. It selects a single node in a graph and,

after that, visits all the nodes adjacent to the selected node

BFS Algorithms

BFS Algorithms

BFS Algorithms

Rule 1 − Visit the adjacent unvisited vertex. Mark it as

visited. Display it. Insert it in a queue.

Rule 2 − If no adjacent vertex is found, remove the first

vertex from the queue.

Rule 3 − Repeat Rule 1 and Rule 2 until the queue is

empty.

BFS Algorithms
Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Enqueue the starting node A and set its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until QUEUE is empty

Step 4: Dequeue a node N. Process it and set its STATUS = 3 (processed

state).

Step 5: Enqueue all the neighbours of N that are in the ready state (whose

STATUS = 1) and set

their STATUS = 2

(waiting state)

[END OF LOOP]

Example of BFS Algorithms

 A  B  D  C  F  E  G

Example of BFS Algorithms

Complexity of BFS Algorithms

The time complexity of the BFS algorithm is

represented in the form of O(V + E), where V is the

number of nodes and E is the number of edges.

The space complexity of the algorithm is O(V).

Application of BFS Algorithms
1. BFS can be used to find the neighboring locations from a given source

location.

2. In a peer-to-peer network, BFS algorithm can be used as a traversal

method to find all the neighboring nodes. Most torrent clients, such as

BitTorrent, uTorrent, etc. employ this process to find "seeds" and

"peers" in the network.

3. BFS is used to determine the shortest path and minimum spanning tree.

4. BFS is also used in Cheney's technique to duplicate the garbage

collection.

5. It can be used in ford-Fulkerson method to compute the maximum flow

in a flow network.

Application of BFS Algorithms

1. To build index by search index

2. For GPS navigation

3. Path finding algorithms

4. Cycle detection in an undirected graph

5. In minimum spanning tree

BFS EXAMPLE

BFS Vs DFS
sn BFS DFS

1
BFS finds the shortest path to the

destination.

DFS goes to the bottom of a subtree,

then backtracks.

2
The full form of BFS is Breadth-

First Search.

The full form of DFS is Depth First

Search.

3
It uses a queue to keep track of

the next location to visit.

It uses a stack to keep track of the

next location to visit.

4
BFS traverses according to tree

level.

DFS traverses according to tree

depth.

5 It is implemented using FIFO list. It is implemented using LIFO list.

6
It requires more memory as

compare to DFS.

It requires less memory as compare

to BFS.

BFS Vs DFS
sn BFS DFS

7
There is no need of

backtracking in BFS.

There is a need of backtracking

in DFS.

8
You can never be trapped into

finite loops.

You can be trapped into infinite

loops.

9

If you do not find any goal, you

may need to expand many

nodes before the solution is

found.

If you do not find any goal, the

leaf node backtracking may

occur.

Huffman Coding Tree

• Huffman Coding is a technique of compressing data

to reduce its size without losing any of the details. It

was first developed by David Huffman.

• Huffman Coding is generally useful to compress the

data in which there are frequently occurring

characters.

Huffman Coding Tree

• (i) Data can be encoded efficiently using Huffman Codes.

• (ii) It is a widely used and beneficial technique for

compressing data.

• (iii) Huffman's greedy algorithm uses a table of the

frequencies of occurrences of each character to build up an

optimal way of representing each character as a binary

string.

Algorithms of Huffman Coding
Huffman (C)

1. n=|C|

2. Q ← C

3. for i=1 to n-1

4. do

5. z= allocate-Node ()

6. x= left[z]=Extract-Min(Q)

7. y= right[z] =Extract-Min(Q)

8. f [z]=f[x]+f[y]

9. Insert (Q, z)

10. return Extract-Min (Q)

Huffman’s Tree Example

Huffman’s Tree Example

Huffman’s Tree Example

Huffman’s Tree Example

Huffman’s Tree Example

Huffman’s Tree Example

Huffman’s Tree Example

Huffman’s Tree Example

Huffman’s Tree Example

Huffman’s Tree Example

Huffman’s Tree Example

Huffman’s Tree Example

Huffman’s Coding Complexity

1. The time complexity for encoding each unique character

based on its frequency is O(nlog n).

2. Extracting minimum frequency from the priority queue

takes place 2*(n-1) times and its complexity is O(log n).

Thus the overall complexity is O(nlog n).

Applications of Huffman’s Coding

1. Huffman coding is used in conventional compression

formats like GZIP, BZIP2, PKZIP, etc.

2. For text and fax transmissions.

Binary tree vs Binary search tree

Points Binary Tree Binary Search Tree

Definit

ion

A Binary Tree is a non-linear

data structure in which a

node can have 0, 1 or 2

nodes. Individually, each

node consists of a left pointer,

right pointer and data

element.

A Binary Search Tree is an

organized binary tree with a

structured organization of

nodes. Each subtree must also

be of that particular structure.

Struct

ure

There is no required

organization structure of the

nodes in the tree.

The values of left subtree of a

particular node should be

lesser than that node and the

right subtree values should be

greater.

points Binary Tree Binary Search Tree

Opera

tions

Perfor

med

The operations that can be

performed are deletion,

insertion and traversal

As these are sorted binary

trees, they are used for fast

and efficient binary search,

insertion and deletion.

Types

There are several types. Most

common ones are the

Complete Binary Tree, Full

Binary Tree, Extended Binary

Tree

The most popular ones are

AVL Trees, Splay Trees,

Tango Trees, T-Trees.

Binary tree vs Binary search tree

Threaded Binary Tree

1. The idea of threaded binary trees is to make inorder

traversal faster and do it without stack and without

recursion.

2. A binary tree is made threaded by making all right

child pointers that would normally be NULL point to

the inorder successor of the node (if it exists)

Threaded Binary Tree
In the linked representation of binary trees, more than one

half of the link fields contain NULL values which results in

wastage of storage space. If a binary tree consists of n nodes

then n+1 link fields contain NULL values. So in order to

effectively manage the space, a method was devised by Perlis

and Thornton in which the NULL links are replaced with

special links known as threads. Such binary trees with threads

are known as threaded binary trees. Each node in a

threaded binary tree either contains a link to its child node or

thread to other nodes in the tree.

Threaded Binary Tree

Threaded Binary Tree

Threaded Binary Tree
There are two types of threaded binary trees.

Single Threaded: Where a NULL right pointers is made to

point to the inorder successor (if successor exists)

Double Threaded: Where both left and right NULL pointers

are made to point to inorder predecessor and inorder

successor respectively. The predecessor threads are useful for

reverse inorder traversal and postorder traversal.

Threaded Binary Tree

Threaded Binary Tree

Threaded Binary Tree

Threaded Binary Tree

Threaded Binary Tree

Insertion in Threaded Binary Tree

Insertion in Binary threaded tree is similar to insertion in

binary tree but we will have to adjust the threads after

insertion of each element.

Case 1: Insertion in empty tree

Case 2: When new node inserted as the left child

Case 3: When new node is inserted as the right child

Insertion in Threaded Binary Tree
Following example show a node being inserted as left child

of its parent.

Insertion in Threaded Binary Tree
After insertion of 13 element

Insertion in Threaded Binary Tree
Following example shows a node being inserted as right

child of its parent.

Insertion in Threaded Binary Tree
After 15 inserted

Deletion in Threaded Binary Tree

In deletion, first the key to be deleted is searched, and then

there are different cases for deleting the Node in which key is

found.

Case A: Leaf Node need to be deleted

Case B: Node to be deleted has only one child

Case C: Node to be deleted has two children

Deletion in Threaded Binary Tree

Case A: Leaf Node need to be deleted

In BST, for deleting a leaf Node the left or right pointer of

parent was set to NULL. Here instead of setting the pointer to

NULL it is made a thread.

If the leaf Node is to be deleted is left childs of its parent

then after deletion, left pointer of parent should become a

thread pointing to its predecessor of the parent Node after

deletion.

Deletion in Threaded Binary Tree

Case B: Node to be deleted has only one child

After deleting the Node as in a BST, the inorder successor

and inorder predecessor of the Node are found out.

Deletion in Threaded Binary Tree

Case C: Node to be deleted has two children :

We find inorder successor of Node ptr (Node to be deleted)

and then copy the information of this successor into Node

ptr. After this inorder successor Node is deleted using either

Case A or Case B

Deletion in Threaded Binary Tree
Case A: Leaf Node need to be deleted

Deletion in Threaded Binary Tree
Case A: Leaf Node need to be deleted

Deletion in Threaded Binary Tree
Case B: Node to be deleted has only one child

Deletion in Threaded Binary Tree
Case B: Node to be deleted has only one child

Advantages Threaded Binary Tree

1. In this Tree it enables linear traversal of elements.

2. It eliminates the use of stack as it perform linear traversal, so

save memory.

3. Enables to find parent node without explicit use of parent

pointer

4. Threaded tree give forward and backward traversal of nodes by

in-order fashion

5. Nodes contain pointers to in-order predecessor and successor.

6. In threaded binary tree there is no NULL pointer present.

Hence memory wastage in occupying NULL links is avoided.

7. There is no need of stack while traversing the tree, because

using thread links we can reach to previously visited nodes.

Disadvantages Threaded Binary Tree

1. This makes the Tree more complex .

2. Insertion and deletion operation becomes more

difficult.

3. Tree traversal algorithm becomes difficult.

4. Memory required to store a node increases. Each

node has to store the information whether the links is

normal links or threaded links.

Disadvantages Threaded Binary Tree

5. When implemented, the threaded binary tree needs to

maintain the for each node to indicate whether the

link field of each node points to an ordinary node or the

node's successor and predecessor.

6. Insertion into and deletion from a threaded binary

tree are more time consuming since both threads and

ordinary links need to be maintained.

Applications Threaded Binary Tree

1. Expression parsing: Easy evaluation of mathematical

expressions through the use of expression parsing.

2. Database indexing: Finding information quickly in indexed

databases.

3. Threaded in-order traversal: Ordered threads implementing

quick and responsive user interfaces are crucial.

4. Symbol table management: In a compiler or interpreter,

threaded binary trees can be used to store and manage symbol

tables for variables and functions.

Applications Threaded Binary Tree

5. Navigation of hierarchical data: In certain applications,

threaded binary trees can be used to navigate hierarchical data

structures, such as file systems or web site directories.

6. Fast Searching and Retrieval: Threaded binary trees enable

faster navigation, improving the performance of search operations

7. Threaded Tree-based Iterators: Threaded trees are useful for

implementing efficient iterators for various tree traversal orders

8. Binary Search Tree Operations: Threaded trees enhance

efficiency in operations like finding minimum/maximum elements

or predecessors/successor

References

1. https://www.javatpoint.com/depth-first-search-algorithm

2. https://www.javatpoint.com/breadth-first-search-algorithm

3. https://www.javatpoint.com/threaded-binary-tree

4. https://www.codingninjas.com/studio/library/understanding-

threaded-binary-trees

https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees

THANK YOU!!!
My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

https://anandgharu.wordpress.com/

