MET’s Institute of Engineering

GCTREE”

Prepared By
Prof. Anand N. Gharu

(Assistant Professor)

Computer Dept.
CLASS :SE COMPUTER 2019 01 February 2024

SUBJECT : DSA (SEM-II)

Note: The material to prepare this presentation has been taken from internet and are generated only
®

U N | T I | | for students reference and not for commercial use.

SYLLABUS

Savitribai Phule Pune University
Second Year of Engineering (2019 Course)
210252: Data Structures and Algorithms

Teaching Scheme Credit Scheme Examination Scheme and Marks
Lecture: 03 Hours/Week 03 Mid_Semester(TH): 30 Marks
End_Semester(TH): 70 Marks

Prerequisite Courses: 110005: Programming and Problem Solving
210242: Fundamentals of Data Structures

Companion Course: 210257: Data Structures and Algorithms Laboratory

SYLLABUS

Tree- basic terminology, General tree and Its representation,
representation using sequential and linked organization, Binary
tree- properties, converting tree to Dbinary tree, binary tree
traversals(recursive and non-recursive)- Inorder, preorder, post
order, depth first and breadth first, Operations on binary tree.
Huffman Tree (Concept and Use), Binary Search Tree (BST), BST
operations, Threaded Dbinary search tree- concepts, threading,
Insertion and deletion of nodes in In-order threaded binary search

tree, in order traversal of in-order threaded binary search tree.

UNIT-11
TREE

TERMINOLOGIES IN TREE

» “A tree is a nonlinear hierarchical data
structure that consists of nodes connected by

edges.”

Why Tree Data Structure?

Other data structures such as arrays, linked list, stack, and
queue are linear data structures that store data sequentially.
In order to perform any operation in a linear data structure,
the time complexity increases with the increase in the data

size. But, it is not acceptable in today's computational world.

Different tree data structures allow quicker and easier access

to the data as it is a non-linear data structure.

Terminologies of Tree

 Root:

[t is the topmost node of a tree.
Edge
+ Edge: Node

It is the link between any two nodes.

« Node:

A node is an entity that contains a key or value and pointers

to its child nodes.

Terminologies of Tree

Root

Level 0

Level 1

/r
§

Parent Node R f) Q«.'smnngs .“\GJ' Level 2

Child Node - ’Q @ w Level 3
4

4 \
1

Sub-tree Leaf Node

Terminologies of Tree

Child node: If the node is a descendant of any node, then

the node is known as a child node.

Parent: If the node contains any sub-node, then that node

is said to be the parent of that sub-node.

Sibling: The nodes that have the same parent are known

as siblings.

Terminologies of Tree

Leaf — The node which does not have any child node is

called the leaf node.
Subtree - Subtree represents the descendants of a node.

Path - Path refers to the sequence of nodes along the

edges of a tree

Terminologies of Tree

« Traversing — Traversing means passing through nodes in

a specific order.

« Levels - Level of a node represents the generation of a
node. If the root node is at level o, then its next child node

is at level 1, its grandchild is at level 2, and so on.

« keys - Key represents a value of a node based on which a

search operation is to be carried out for a node.

Terminologies of Tree

Leaf/External node: Node with no children.

Internal node:
The node having at least a child node is called an internal

node

* Height of a Node :
The height of a node is the number of edges from the node
to the deepest leaf (ie. the longest path from the node to a

leaf node).

Terminologies of Tree

The depth of a node is the number of edges from the root
to the node.

» Height of a Tree :

The height of a Tree is the height of the root node or the

depth of the deepest node.

Terminologies of Tree

* Degree of a Node :
The degree of a node is the total number of branches of that

node.

* Forest:
A collection of disjoint trees is called a forest.
You can create a forest by cutting the root of a tree.

Applications of Tree

Binary Search Tree (BST) is used to check whether
elements present or not.

Heap is a type of tree that is used to heap sort.

Tries are the modified version of the tree used in modem
routing to information of the router.

The widespread database uses B-tree.

Compilers use syntax trees to check every syntax of a

program.

Advantages of Tree

Trees reflect structural relationships in the data.
Trees are used to represent hierarchies.

Trees provide an efficient insertion and searching.

. Trees are very flexible data, allowing to move

subtrees around with minimum effort.

Types of Tree

General Tree
Binary Tree

Binary Search Tree
AVL Tree

B-Tree

General Tree

General Tree

The general tree is the type of tree where there are no
constraints on the hierarchical structure.

Properties

The general tree follows all properties of the tree data structure.

A node can have any number of nodes.

fi?@:

A node can have any number of children

Binary Tree

« A binary tree has the following properties:

* Properties
« Follows all properties of the tree data structure.

« Binary trees can have at most two child nodes.

« These two children are called the left child and the right child.

-

N J X J
Y Y

A node can have any at most two children

Binary Tree

A binary tree has the following properties:

At each level

of i, the maximum number of nodes is 2i.

The height of the tree is defined as the longest path from the root

node to the

eaf node. The tree which is shown above has a |

equal to 3. T

neight

nherefore, the maximum number of nodes at heig|

1t 3 1S

equal to (1+2+4+8) = 15. In general, the maximum number of nodes

possible at height h is (20 + 21 + 22+....2h) = 2h+1 -1.

The minimum number of nodes possible at height h is equal to h+1.

If the number of nodes is minimum, then the height of the tree

would be maximum. Conversely, if the number of nodes is

maximum, then the height of the tree would be minimum
o

Binary Tree Representation

A node of a binary tree Is represented by a structure containing a data

part and two pointers to other structures of the same type.
struct node

{

Int data;

struct node *left;

struct node *right;

g

NULL NULL NULL NULL

Types of Binary Tree

« Full Binary tree: It is a special type of binary tree. In this tree data
structure, every parent node or an internal node has either two

children or no child nodes.

Types of Binary Tree

« Perfect binary tree: In this type of tree data structure, every
internal node has exactly two child nodes and all the leat nodes are

at the same level.

:

Binary Tree

Complete binary tree: It resembles that of the full binary tree with
a few differences.

Every level is completely filled.

. The leaf nodes lean towards the left of the tree.

. It is not a requirement for the last leaf node to have the right sibling,

i.e. a complete binary tree doesn’t have to be a full binary tree.

Binary Tree

« Skewed binary tree: It is a pathological or degenerate tree where

the tree is dominated by either the left nodes or the right nodes.

Therefore, there are two types of skewed binary trees, i.e. left-

skewed or the right-skewed binary tree.

Binary Tree

« Balanced binary tree: The difference between the height of the left

and right sub tree for each node is either o or 1.

Static Binary Tree Representation :

* Array Representation :

« Binary tree using array represents a node which is numbered sequentially level

by level from left to right. Even empty nodes are numbered.

« Array index is a value in tree nodes and array value gives to the parent node of
that particular index or node. Value of the root node index is always -1 as there
is no parent for root. When the data item of the tree is sorted in an array, the
number appearing against the node will work as indexes of the node in an

array.

« Location number of an array is used to store the size of the tree. The first index
of an array that is 'o’, stores the total number of nodes. All nodes are numbered
from left to right level by level from top to bottom. In a tree, each node having

o ®
an index i is put into the array as its i th element.

Binary Tree Representation using Array

=2 3

Fig. Binary Tree using Array

O . = = <3 = s 7
L?IA[B]C[DIEIFIGI
Fig. Location Number of anmn Array imn a

T ree

Dynamic -Binary Tree Representation

Linked representation :

Binary trees in linked representation are stored in the memory
as linked lists. These lists have nodes that aren’t stored at
adjacent or neighboring memory locations and are linked to
each other through the parent-child relationship associated

with trees.

In this representation, each node has three different parts -
« pointer that points towards the right node,
« pointer that points towards the left node,

e data element.

Binary Tree Representation

AENIN
AN NN
[P 5 I A T I N R

NULL NULL NULL NUL‘L NULL NULL

Binary Tree Representation

Left Data Right

Binary Tree Representation

Linked representation :

This is the more common representation. All binary trees
consist of a root pointer that points in the direction of the
root node. When you see a root node pointing towards null or
o, you should know that you are dealing with an empty binary
tree. The right and left pointers store the address of the right

and left children of the tree

Operations of Binary Tree

Searching: For searching element 2, we have to traverse all
elements (assuming we do breadth first traversal). Therefore,
searching in binary tree has worst case complexity of O(n).
Insertion: For inserting element as left child of 2, we have to
traverse all elements. Therefore, insertion in binary tree has
worst case complexity of O(n).

Deletion: For deletion of element 2, we have to traverse all
elements to find 2 (assuming we do breadth first traversal).

Therefore, deletion in binary tree has worst case complexity of

O(n).

Bmary Tree Examplgs

In Fag 6.13, .
Numberoflevels=3(0t02)andhenght=2

ore, we need the array of size 2 —1is 2 1=
Theref =

D
The representation of the aboye binary tr;\—__\ e
[- . E\\‘ T —\5 6 7
LW e - S
pdcmrrivmimneion LTS LB IR W
numbered left to l'ight g Tom t-he oot

Nodes on same level will be
’;mple 2: Consider them B

Binary Tree Examples

T TTvess on same level will be

. -
representation of the aboveblnarytreeus,nga] yi:x::f”o of size 2 - 1 = 1S. The
= < = s S €17 |18]|9 10| 12 | 13 | 24 | a5 |
o = = = = — o= B &V L%l b b b]
i | 1 1
< > < > < Sl >t
level O 1 2

We can apply the above rules to find array representation.

1. Parent of node E (node 5) =%= %= 2i.e.B.

Hence, node B is at position 2 in the array.
2. Left child (i) = 2i.

For example, left child of E=2x5=10i.e. H.
Since, E is the 5™ node of tree.
3. Right child (i)=2i+1
For example: Right child of D=2x4 +1=8+1=9ie.G.
_Since, D is the 4™ node of tree and G is the 9" element of an array.

Advantages and Disadvantages

Advantages of linked representation of Binary Tree.
L Efficient use of memory than that of sequentia] representation,
2. Insertion and deletion operations are more efficient

-3, Use for dynamic memory allocation,

Disadvantages of linked representation of Binary Tree:

1 1f we want to access a particular node, we haye t, traverse from oot to that nodé
there is no direct access to any node,
2. Since, two additional pointer are pregent (eft child an

. d right chld), the memo”
needed per node is more than that of sequential reppes

entation.

Binary Search Tree

- Binary search tree is a data structure that quickly

allows us to maintain a sorted list of numbers.

1. It is called a binary tree because each tree node has a
maximum of two children.
2. It is called a search tree because it can be used to search

for the presence of a number in O(log(n)) time

Binary Search Tree

* Properties
« Follows all properties of the tree data structure.
1. The value of the key of the left sub-tree is less than the

value of its parent (root) node's key.

2. The value of the key of the right sub-tree is greater than or

equal to the value of its parent (root) node's key.

3. Both subtrees of each node are also BSTs I.e. they have the

above two properties

Binary Search Tree

« The binary tree on the right isn't a binary search tree
because the right subtree of the node "3" contains a
value smaller than it.

Operation of Binary Search Tree

Insert — Inserts an element in a tree/create a tree.
Search - Searches an element in a tree.

Preorder Traversal - Traverses a tree in a pre-order
manner.

Inorder Traversal - Traverses a tree in an in-order
manner.

Postorder Traversal — Traverses a tree in a post-order
manner.

Binary Search Tree

This Is the main node
or top-level node. It

has left and right sub-
trees

-
i-"""-
4 -

Right sub-tree has
value greater than
node

Left sub-tree
has value less
than node

This value cannot be
8, or 9 or 10 because
then it will be greater
than /7, hence not
fulfilling the condition

of left sub tree 10 This value can be greater

than 7 and 9 but not greater
than 11 the top node

Binary Search Tree

N

Fig. Binary Search Tree

Left node value<= root node <= right node value

Binary Search Tree

Create the binary search tree using the following data elements.
15, 11, 13, 8,9, 17, 16, 18

Binary Search Tree

Key = 16

' Here, all values in the left subtrees are
subtrees are greater thantheroot

Binary Search Tree

Create the binary search tree using the following data elements.
43, 10, 79, 90, 12, 54, 11, 9, 50

Step 1 Step 2 Step 3 Step 4

(./ 43 \

d 1) d 5)
N N

Binary search Tree Creation

Operation of Binary Search Tree

1. Create: creates an empty tree.

2. Insert: insert a node In the tree.

3. Search: Searches for a node In the tree.
4. Delete: deletes a node from the tree.

5. Inorder: in-order traversal of the tree.
6. Preorder: pre-order traversal of the tree.

/. *Postorder: post-order traversal of the tree ’

Operation of Binary Search Tree

search Operation

Elements to be searched
in the tree 10

10< 12 so No need to
move to the search in
left sub-tre right sub-

tree

10 > 7 so
move to the
right sub- O
tree

10 > 9 so

move to the
right sub-tree

child
On comparison o

10 matches,
return the value

Operation of Binary Search Tree

1. Search:

Algorithm:

If root == NULL
return NULL;

If number == root->data
return root->data;

If number < root->data
return search(root->left)

If number > root->data
r.eturn search(root->right)

Operation of Binary Search Tree
Insert Operation

Elements to be inserted
In the tree from left to
right:

12,7,9, 19,510

Compare 19, 5 and 10
with 12 and other nodes
and build the tree

accordingly

Insert 12 as root node and
compare 7 and 9 values for

inserting to night or left-sub tree 19>12&19>

7 50 add ta nght

1< 12 s0 add
to left

0<12&5<7
50 add to left 10<12&10>7&
10>09s0add to

nght

0<12&9>7
50 add to right

Operation of Binary Search Tree

2. Insert :

Algorithm:

If node == NULL

return createNode(data)
If (data < node->data)

node->left = insert(node->left, data);
else If (data > node->data)

node->right = Insert(node->right, data);
return node;

Operation of Binary Search Tree
Delete Operation - Case 1

Node to be deleted has 0
children
: Result

Simple Delete the node
and remove the link

=

No children

No children

No children

Operation of Binary Search Tree

Delete Operation - Case 2

Node to be deleted has 1
child
o Result

Simple Delete the node
and replace it with the
child node

1 child
|

Replaced

Operation of Binary Search Tree

Delete Operation - Case 3 (a)

Node to be deleted has 2 child
o Q Resul

Replace Situation In Order

Predecessor
Simple Delete the node
12 and replace it with 10

=

In Order predecessor is largest
element in the left sub-tree of the
node to be deleted (12)

10 is largest

Operation of Binary Search Tree

Delete Operation - Case 3 (h]

Node to be deleted has 2 child
Replace Situation: In Order Successor
o Result

Simple Delete the node
12 and replace it with 19

=

In Order successor is largest element
in the nght sub-tree of the node to
be deleted (12)

19 is largest

Operation of Binary Search Tree

3. Delete :

Algorithm:

Case 1: Deleting a leaf node

We use the following steps to delete a leaf node from BST...
Step 1 - Find the node to be deleted using search operation

Step 2 - Delete the node using free function (If it is a leaf) and

terminate the function. .

Operation of Binary Search Tree
3. Delete :

Algorithm:

Case 2: Deleting a node with one child

We use the following steps to delete a node with one child from
BST...

Step 1 - Find the node to be deleted using search operation

Step 2 - If it has only one child then create a link between Its

parent node and child node.

Step 3 - Delete the node using free function and terminate the

function. .

Operation of Binary Search Tree
3. Delete :

Algorithm:
Case 3: Deleting a node with two children

We use the following steps to delete a node with two children
from BST...

Step 1 - Find the node to be deleted using search operation

Step 2 - If It has two children, then find the largest node In its left
subtree (OR) the smallest node In its right subtree.

Step 3 - Swap both deleting node and node which is found In the
above step.

Step 4 - Then check whether deleting node came to case 1 or case
2 or else goto step 2 .

Operation of Binary Search Tree
3. Delete :

Algorithm:
Case 3: Deleting a node with two children

We use the following steps to delete a node with two children
from BST...

Step 5 - If It comes to case 1, then delete using case 1 logic.
Step 6- If It comes to case 2, then delete using case 2 logic.

Step 7 - Repeat the same process until the node is deleted from
the tree.

Convert a Generic Tree (N-array Tree) to

Binary Tree

Following are the rules to convert a Generic(N-array tree) to

binary tree :

1. The root of the Binary Tree Is the Root of the Generic

Tree.

2. The left child of a node In the Generic Tree IS the Left
child of that node In the Binary Tree.

3. The right sibling of any node in the Generic Tree Is the
Right child of that node In the Binary Tree.

59

Convert a Generic Tree(N-array Tree) to Binary Tree
Examples:

Convert the following Generic Tree to Binary Tree:

Convert a Generic Tree(N-array Tree) to Binary Tree
Below is the Binary Tree of the above Generic Tree:

D,
Step 1 e)
Step 2 e e e =
Step 3 G =

Step 4 Step -
e oo e >, &
G o) G (B>
& (B
e (1D
Step 6 °
Step 7 c

Step 8

Convert a Generic Tree(N-array Tree) to Binary Tree
Note: If the parent node has only the right child In the
general tree then It becomes the rightmost child node of the

last node following the parent node in the binary tree.

In the above example, If node B has the right child node L
then In binary tree representation L would be the right child
of node D.

62

Convert a Generic Tree(N-array Tree) to Binary Tree
Examples:

Convert the following Generic Tree to Binary Tree:

Convert a Generic Tree(N-array Tree) to Binary Tree

Solution:

Stage 1 tree by using the above mentioned procedure is as follows:

Stage 2 tree by using the above mentioned procedure is as follows:

€
2L

Convert a Generic Tree(N-array Tree) to Binary Tree
Examples:

Convert the following Generic Tree to Binary Tree:

Convert following generalized tree into 4 mary trze

A
@Yty 5

) L GOHJ (K
e

Convert a Generic Tree(N-array Tree) to Binary Tree
Solution :

Convert a Generic Tree(N-array Tree) to Binary Tree
Examples:

Convert the following tree into Binary free.

® ® © &
0JOR0

Convert a Generic Tree(N-array Tree) to Binary Tree

Examples:
The binary tree will be -

Convert a Generic Tree(N-array Tree) to Binary Tree
Examples:

OO

l\tnlohunonnﬁo-lo v R AL AR R
RO BODOR g . e ’ OO
\'ll.‘ll.‘l..lt’l!‘ LI . ‘l"l!llotlllllol U Illl ' AN Y)
: SO ‘Y D DODUOUOOOL) R
LO ouuunuuunn 0000000 A SOOGS0

c- DU U R L) n

DOOUDUUUUUUUU
AKX ' e ' OO0

Ol.lllll..
DOUSUCOUOUUS
QOO .l.lillll
. ‘ 0 l.ll‘ll'
BAOOOOLOOOO0000
lQll.l‘ DOCDOCOUO0
OO llc-cltt OO L)
' looo'ol-
LU
DUDIUR

.
.l'l"'.l UL
D) DOOUUC

\
DOOOOU) OO QUOUCK
BOOOO000000 lttll\.lllthlll 0 QUUOCOOOUCD)
UL LA
| U t AN 0 -.o OO0 l.. ' 0 D . " Y _" ;A
LU ‘. Al ‘. LA -l|ﬁ LR LA . L
Clllltnlll'!ll'llll OUCUOOCUOUOCOO0 .. 0000000144 . v
OOO00000 0000000080000 ' UOUODOOUOLL) ' . o o
OO aONaaaa0n0s OO0 " 0 A 10000 DU X J "" Vo e
0 OOROORODOOOOODOC Q00 . v ’ 7
I.l...‘ll'll.lll'llll.ll.lll ‘. '.'.'.‘l"'ll . . . LA R . DR RN N LR o
. . ahe by . LA . DR R O N
DU L O L R UL
DU

DOOOOOCDOoNOOE e
-00!-..1.0---0- l..l.oll..tl..lloll.li'l'oal'

UOOCBOODOUDOONDODCOOL OO

000 . D X shrdsendp i l-culo.ac-u.'ln--

' ob\l.ll!|‘l.l.l.l ﬂ UL UARUUUUU) . o. lll [---.---.lon.n-- g e
U UCIOUCOULUUN) R UIUUUULE ' . c|.ao.g.....:--...-..n...u~ao----
. \J . ..a.oo' ' DO
. 'lll.‘..'il\laal."’.

) '

......---ol DUUER
.

"
SOOI U
PIOUUIDUU

o
PO
SO
OO

OO OO

ee et el a b

BOOUOO0UOR000

OOOOONOOCOOOOOOOOO0n

0 OOOOOOOOORN0000

OO0 OOOOOOONOOCONOOON)

COOOCOOORUOOOU

OOOOOOCOOOROOORRONT

.
DOODODDOON
.|llll.‘llllll'!l
U

AR
st vsst s

Convert a Generic Tree(N-array Tree) to Binary Tree
Solution : Binary tree is

Tree Traversal

Traversal of the tree In data structures Is a process of visiting each node
and prints their value. There are three ways to traverse tree data

structure.
1. Pre-order Traversal
2. In-Order Traversal

3. Post-order Traversal

Tree Traversal

Tree traversal means traversing or visiting each node of a tree.
Linear data structures like Stack, Queue, linked list have only
one way for traversing, whereas the tree has various ways to

traverse or visit each node. The following are the three different

ways of traversal:

1. Inorder traversal
2. Preorder traversal

3. Postorder traversal

Inorder Traversal

In the In-order traversal, the left subtree is visited first, then the root, and

later the right subtree.

Algorithm:

Step 1- Recursively traverse the left subtree

Step 2- Visit root node

Step 3- Recursively traverse right

Left Subtree Right Subtree

D>B->E->A->F->C->G

Pre-order Traversal

In pre-order traversal, It visits the root node first, then the left subtree,

and lastly right subtree.

Algorithm: Left Subtree Right Subtree

Step 1- Visit root node A->B->D->E->C->F->G
Step 2- Recursively traverse the left subtree

Step 3- Recursively traverse right subtree

Post-order Traversal

It visits the left subtree first in post-order traversal, then the right subtree,

and finally the root node.

Algorithm:

Step 1- Recursively traverse the left subtree

Step 2- Recursively traverse right
Step 3- Visit root node

Left Subtree Right Subtree

D>E->B->F->G->C->A

Tree Traversal Example

Hence, Preorder traversal 18
10, 8, 7, 9, 12, 11, 13.

The Postorder sequence 1S
7,9, 8, 11, 13, 12, 10.

A O
o'’ B
. 5 o - . »
e+ » ”
. . P
0"e"e® a%a "
o"e"a"s " Pevesvile's
A 2>
F - .', 1 . "
R f o
‘e S e - o
A A e . po e
¢ .- " A g
%, “
v -
< '. - .
.
. - . Py
X
’
- L ‘
. P

Fig. 2.6.1 Binary tree

Inorder sequence is 7, 8, 9, 10, 11, 12, 13

Tree Traversal Example

SIS e

0
-.-....,--.-.---u..»-......
SOOOO000
O

. 0
SO
.-.c»n...c------..v--- l'll.-lvll-'
POROOCS) '
" aae

e .-~-.--;u.. .--.-'vn-v-.--...».
o0 00 DOCRCD OR0)
W'
LR

RO)

' e 0 .
.............n..---.-..... A e
) OO0
e Vet DO ‘e
. e 4 e e an e . “ . . .

S ..-................-.... PhA i aanaay
-.-....>‘... R N I I
e i i naandy Yeane

RerRR Ry

T . dvaedenedy

50
OOLLEX
o) e e
S S .~... ..-.......-.--.'.. -.....-......‘...’.-......
e WA

....................‘..

0 00 e
e S S G

Solution: Preor‘der Sequence . 50, 17, 12, 9, 14, 23, 19, 72, 54, 67, 76.
Inorder Sequence : 9, 12, 14,17, 23, 19, 50, 54, 67, 72, 76.
Postorder Sequence : 9, 14, 12, 19, 23, 17, 67, 54, 76, 72, 50.

Tree Traversal Example

Binary Search Tree
Preorder Traversal - 100, 20,10, 30,200, 150, 300

Inorder Traversal- 10, 20,30,100, 150, 200, 300
Postorder Traversal : 10,30, 20, 150, 300, 200, 100

Tree Traversal Example

root "ok
/ \

S <
\ 35

0
P il ™
70
N 7
44 66

1
i
10
#F %

4 12

N\

22
Y N '4
18 90

24 31

InOrder(root) visits nodes in the following order:
410,12, 15,:18,22,24,25,31,35,44,50,66; 70,90

A Pre-order traversal visits nodes in the following order:
25,15,10, 4,12, 22, 18, 24, 50, 35, 31, 44, 70, 66, 90

A Post-order traversal visits nodes in the following order:
4,12,10, 18, 24, 22, 15, 31, 44, 35, 66, 90, 70, 50, 25

g 00
U Wele Y OOLENEER A0
D ARSE QOODOONT) AOOR0S AAO08
g o 0 weve ROR0 Sl
0 DRSO ASO00 0 g
Vi, Wi SO0 ' AN o) A%
I) ¥, Sooey O e A O Y N N X X
' . . AR SR D 8 AR 8 QuCOCRXXA AN .
X * 0 A SO O ‘ 0 e 4 M BO00 ASIOUOL
2 ! ! . “o 000 o "+ () v 0 el AASSODCOUUEEN X LT AR,
LK) ' ’ 0 0 0 . 00 A OO XN NAY X :
oo OO OO LN R SSOOCOON LX AR " .~‘.-.......-... AAESOSOOCOOREE AN X " “"“ RRRRtON
’ OCOROREL e A0 ARAAOGOUOOOCEA) ANOOCOODCOUCRAA DOOK 8000) .“ \
R ASAOAIDOROOOEK NN AOOOURE ' IR} _..._._“.) ' . : '
’ 00RO y P ety e e e OO .‘.--u-‘-' X OOCULEAN M .
' A AAASOO000DDON ' ’ A AN RICULX N OORKE R \
' 1 ' . S e B O TN A 8% X X \ \
X ‘ . ARORIORK O SARASOO00OCEK OO0 OO RS X GXXN Y o \
8, (KA e v A OO AR A O R OODOCE X ey
! g G ' ’ ‘ i e e Ve -
’ W y o 00 ’ L M.-..v- NOCUGDERAARA X A J .
‘ : X : : . BRI R AANAASSASON (EXEAAANSNT AR 0
o0 ’ A AASOC) AAOOCOR
X S ,. 0 veais 0 " . ‘. 0 USROS DODCEN O LA
. , ’ O U OORORCEAASOUOL OO0 SOOR
' 0 ‘ 0 s 0 o ' . J OOULRRAAS AN SO0 AOOGUDOOD
Per X y OO RO AR IASOCOC AR
O g DO oy g iy Sises e " AN s e NAASOOOS SO e
‘. 0 '+ ! \ ' B AU AR AN RN
! ! ‘ X RO ' W
' ' ‘ Ok . . .
A AOOOCUL R
' J ! \ g A SAAN . X . \
Y ’ N " .. X
. X " \ O ..-‘.. N X o D .'A... : v '.
X X Ve SR O
3 S el o'’ ..-.- LR NN
A . DEOCORCECN e
'

Preorder: | P

Inorder :

€

..........
------------ . A'lo- . \

Tre

........ IR A ..‘ ‘

Preorder: { A
|n0|'d9|' :‘ K,‘ C, F,' ~.

%1 C. K F - Preorder: { [) ’

Inorder :

Preorder : I, F, Preorder : , H,
Inorder : K, , F, Inorder : H.-}"R“.

Tree Traversal Example

int inOrder[] =
int postOrder|]

Binary Tree
int inOrder[]

int postOrder|]
50

€) 0

%@ ©

int inOrder|]

int postOrder|]

int inOrder[] =

int postOrder|[] =

int inOrder[] = @

- {2, 3, 35,(%) 5, X, 55, (6 72);
- {1, 35, %, 4,(#)

= {20, 30, 35, 48, 4SJ 55, 60, 78};

= {20, 35, 38, 45, 49, 55, 78, EEJJ'.

2@

@s 4G«
{28, 351 @ﬂl @

40

int postOrder[] = @ MJ

%,‘

% %

{20, 30, 35, 40, 45, 50, 55, 60, 70};

= {20, 35, 30, 45, 40, 55, 70, 60, 50};

50
Question:
Two traversal n as input,
A

sals are give

ﬁ\
38

https://javabypatel.blogspot.com/2016/05/construct-binary-tree-from-inorder-and-post-order-traversals.html

Tree Traversal Example

Example Input:
Postorder =[10, 18, 9, 22, 4]
Inorder = [10, 4, 18, 22, 9]

Example :
preorder =[1,2,4,5,3,6,7],
postorder = [4,5,2,6,7,3,1]

InOrder Traversal (recursive version)

void inorder (tree pointer ptr)

/* inorder tree traversal */

{ A/B*C*D+E

1f (ptr) {
inorder (ptr->left child);
printf (“sd”, ptr->data);
indorder (ptr->right child);

PreOrder Traversal (recursive version)

void preorder (tree pointer ptr)

/* preorder tree traversal */

{ +**/ABCDE
if (ptr) {

printf (“3d”, ptr->data);
preorder (ptr->left child);
predorder (ptr->right child);

87

POS’[OFder Traversal (recursive version)

void postorder (tree pointer ptr)

/* postorder tree traversal */

{

AB/C*D*E+

if (ptr) {
postorder (ptr->left child);
postdorder (ptr->right child) ;
printf (“3d”, ptr->data);

88

DFS Algorithms

Depth first search (DFS) algorithm starts with the initial node of the
graph G, and then goes to deeper and deeper until we find the goal
node or the node which has no children. The algorithm, then
backtracks from the dead end towards the most recent node that is

yet to be completely unexplored.

The data structure which i1s being used in DFS Is stack. The process
IS similar to BFS algorithm. In DFS, the edges that leads to an
unvisited node are called discovery edges while the edges that leads

to an already visited node are called block edges.

DFS Algorithms

DFS is an algorithm for finding or traversing graphs or trees
In depth-ward direction. The execution of the algorithm
begins at the root node and explores each branch before
backtracking. It uses a stack data structure to remember, to
get the subsequent vertex, and to start a search, whenever a

dead-end appears In any Iteration.

The full form of DFS is Depth-first search.

DFS Algorithms

The step by step process to implement the DFS traversal
IS given as follows -

1. First, create a stack with the total number of vertices In the
graph.

2. Now, choose any vertex as the starting point of traversal,
and push that vertex into the stack.

3. After that, push a non-visited vertex (adjacent to the vertex
on the top of the stack) to the top of the stack.

4. Now, repeat steps 3 and 4 until no vertices are left to visit
from the vertex on the stack's top.

5. If no vertex Is left, go back and pop a vertex from the stack.
6. Repeat steps 2, 3, and 4 until the stack Is empty.

DFS Algorithms

P

The DFS sequence
o @ 10,8, 12, 11, 13
—>f

DFS Algorithms

Step 1: SET STATUS =1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set its STATUS = 2

(waiting state)
Step 3: Repeat Steps 4 and 5 until STACK Is empty

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed

state)

Step 5: Push on the stack all the neighbours of N that are in the ready state
(whose STATUS = 1) and set their

STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

DFS Algorithms Example

Adjacency Lists

The printing sequence of the graph will be :
H- A—-D—->F->-B—->C-—->G-—>E

Complexity of DFS Algorithms

Complexity of Depth First Search

The time complexity of the DFS algorithm is
represented In the form of O(V + E), where V Is the

number of nodes and E Is the number of edges.

The space complexity of the algorithm is O(V).

Application of DFS Algorithms

. DFS algorithm can be used to implement the

topological sorting.
. It can be used to find the paths between two vertices.
. It can also be used to detect cycles in the graph.

. DFS algorithm 1s also used for one solution puzzles.

. DFS Is used to determine if a graph is bipartite or

not.

A OO
SRR AR A s s ey
ORI e
GaahANAN OO G

g RO

thims

W
SRR
SOSNN

\

O
BSOS
DOCOORROURY

Wt Y
SN e

ORIOOUIOE
R R
AL,

Algor

N RN
AN RN N
AR RN AN
IR RN RN RN R

HMEEAREARRENA)

N RN EEFYRARNR)

' AEEN] L

NEEEN LN v
(RENNE RN RN
(NN IR R
UNE RN UL
o g UERR
(UL N | RN
UL LA N
NN NN IANNN

Vel

\] ')

HEERANERERR ENE
(NN EER RN A RARRN
RN ENNN NN RN
RN AR RN A NE

cee i e et T

RN Y IR
AR EREAN AR
RN bl
...... .-.

' i |
RN (RN
th IR
A RN i
(1ren) RN

xample of DFS

UL UK
XK (AR

AN (R
v OO
R (NN
i LK
BOUR (R
theiad DOOCL
RN IR
ek RN
AN AR
..........
v AR

AN R NN

NN NN
OCUUOUNRUUUULL
vy b

BFS Algorithms

1. Breadth-first search I1s a graph traversal algorithm that starts
traversing the graph from the root node and explores all the
neighboring nodes. Then, It selects the nearest node and
explores all the unvisited nodes. While using BFS for traversal,

any node in the graph can be considered as the root node.

2. BFS Is the most commonly used approach. It Is a recursive
algorithm to search all the vertices of a tree or graph data
structure. BFS puts every vertex of the graph into two categories
- visited and non-visited. It selects a single node in a graph and,

after that, visits all the nodes adjacent to the selected node

BFS Algorithms

visit 10,
Visit 8, 12
visit 11, 13
" The BFS
Séquence will be
10,8, 12,11, 13

Level Z

Level]

Level 0

BFS Algorithms
GONCEPT DIAGRAM

Mark any node as Starter or Initial (&8

é\

\ Mark Node as Completed and move to
nextadjacentand
) un-visited nodes (&8

| Explore and traverse un-visited nodes
adjacent to starting node

BFS Algorithms

Rule 1 — Visit the adjacent unvisited vertex. Mark It as

visited. Display It. Insert It In a queue.

Rule 2 — If no adjacent vertex Is found, remove the first

vertex from the queue.

Rule 3 — Repeat Rule 1 and Rule 2 until the queue Is
empty.

BFS Algorithms

Step 1: SET STATUS =1 (ready state) for each node in G
Step 2: Enqueue the starting node A and set its STATUS = 2 (waliting state)
Step 3: Repeat Steps 4 and 5 until QUEUE Is empty

Step 4: Dequeue a node N. Process it and set its STATUS = 3 (processed

state).

Step 5: Engqueue all the neighbours of N that are In the ready state (whose

STATUS =1) and set

their STATUS =2

(waiting state)
[END OF LOOP]

Example of BFS Algorithms
Adjacency Lists

B (

A

A:BD
B:C.F
(:EG
G:E
E:BF
FiA
D:F

A>B>D>C>F 3E 26

Example of BFS Algorithms

0

l

\ :
Depth First Traversal fTor the raph 1is

Complexity of BFS Algorithms

The time complexity of the BFS algorithm is
represented in the form of O(V + E), where V Is the

number of nodes and E Is the number of edges.

The space complexity of the algorithm is O(V).

Application of BFS Algorithms

BFS can be used to find the neighboring locations from a given source

location.

In a peer-to-peer network, BFS algorithm can be used as a traversal

method to find all the neighboring nodes. Most torrent clients, such as

BitTorrent, u

orrent, etc. employ this process to find "seeds" and

"peers” In the network.

BFS is used to determine the shortest path and minimum spanning tree.

BFS Is also used In Cheney's technigue to duplicate the garbage

collection.

It can be used In ford-Fulkerson method to compute the maximum flow

INn a flow network

2.

3.

A

D.

Application of BFS Algorithms

. 'To build index by search index

For GPS navigation

Path finding algorithms

. Cycle detection In an undirected graph

In minimum spanning tree

BFS EXAMPLE

> /, Qlsplay it.

BFS sequence : 10, 4, 12, 3,8,11, 6,9, 5,7

BFS VS DFS

SN

BFS

DFS

BFS finds the shortest path to the
destination.

DFS goes to the bottom of a subtree,
then backtracks.

The full form of BFS Is Breadth-

The full form of DFS is Depth First

2 First Search. Search.

. It uses a queue to keep track of |t uses a stack to keep track of the
the next location to visit. next location to visit.

A BFS traverses according to tree DFS traverses according to tree
level. depth.

5 Itis implemented using FIFO list. It is Implemented using LIFO list.

. It requires more memory as It requires less memory as compare

compare to DFS.

to BFS.

BFS VS DFS

nodes before the solution 1s

found.

SN BFS DES

, There 1s no need of There 1s a need of backtracking
backtracking in BFS. In DFS.

o You can never be trapped into | You can be trapped into infinite
finite loops. loops.
If you do not find any goal, you _

If you do not find any goal, the

may need to expand many _

9 leaf node backtracking may

OCCUL.

Huffman Coding Tree

 Huffman Coding Is a technique of compressing data
to reduce Its size without losing any of the detalls. It

was first developed by David Huffman.

 Huffman Coding Is generally useful to compress the
data In which there are frequently occurring

characters.

Huffman Coding Tree

* (1) Data can be encoded efficiently using Huffman Codes.

e (1) It 1s a widely used and beneficial technique for

compressing data.

* (1) Huffman's greedy algorithm uses a table of the
frequencies of occurrences of each character to build up an
optimal way of representing each character as a binary

string.

Algorithms of Huffman Coding

Huffman (C)

1. n=|C|

2.Q«—C

3. for 1=1 to n-1

4. do

5. z= allocate-Node ()

6. Xx= left[z]=Extract-Min(Q)
7. y= right[z] =Extract-Min(Q)
8. f [z]=f[x]+f[y]

9. Insert (Q, z)

10. return Extract-Min (Q)

Huffman’s Tree Example

TTTTTRD) AWML wL .llCl.P Ul JUILIIE exmpl

Huffman’s Tree Example
otep 1+ We will combine first two least values form the tabl. Creating a parent node

Huffman’s Tree Example

Step 2 : Remove first two entries, from the table in step and add the entry of parent
node created in step 1 in the table by maintaining sorted order

Combine first two least values to form a parent

node.

Huffman’s Tree Example
Remove first entres fom the table and add.entry of parent pyg |

position in the fable.

Stap 3 N

l

Huffman’s Tree Example
Step 4 :

S IIrTNyY
100000

'/ /‘l :
‘l/u.’/’/',/.,,

"'/“‘l'lll/“,’.'

»

Huffman’s Tree Example
Step 5 -

Huffman’s Tree Example

Huffman’s Tree Example
Step 7 : Huffman tree is thus obtained.

Huffman’s Tree Example
Step 8 & The left branch is coded with 0 and right branch with 1.

2

: 001
i
3 1M

) & 1 D:ta 0 .
0 O : o 1 o A
- — L
01 Ad] (10 o [.
c.4| [F:4 45 0 : .
:
6
'

Huffman’s Tree Example

/ ()
’ A L R R XY LT Y XTI,
' ‘!:0 |vv ' ""‘ "“","-' y ’ Y Vi f !
| f o p bbelvbvands P
| " ' ' i "' O e Yy Y ‘")
\ AREALLAR] ' NAY T) '
' " UURKCAR)) AAARAAAT AARP SIS AALAREAR iteatd
) fodnd b LA ') e /. 4
b UOOCUSRAN / ' bendid re ' ' “i '
')
‘. RNy R ,‘: 4
A ' J '
‘ ‘e
i for 4 '
| AR
] ' _’
| 1 iy Iy
\) o T
|) ‘
N’ Pibrethy AAAA o0 /
' ' M '
Y]
AN | ULRAR Y Y
' f '
' ' |) 1) | .', '
' bt ‘
' ' '] I ' ']
b '
R] UL ‘ ' ",, -:lll
LA ' I RR AR ‘i {
" \ p ! Ao YRR I ‘.v.o / A //“,//""/,“/" 'l‘l/,/‘,' {
) \ \ ' W \ ' 0 "."IMO‘HI ,,’/,"”'/N Y O, oy
....1. o | ‘
00 R A A AR ! G, u‘,"lc'a'o u‘-'o'o‘/o"”n' LS Y ey e (e '
, PLAAN AN by \ \P A i \ \ A) l‘ , N , f , ' l~) : . '
..\..n.... UAIAR e : SO RO L OROROON T R \. “ YY) .u.‘...'.‘.‘|.|‘|.|.('\i‘l.!.l‘l.l.ili.t‘l‘“”“” nuolull.” QOORO0NS I“". A l. l'- " A A ,.. ‘. . "ﬁ.‘l‘v
" y ALY AL DL LR LR A Y biy URAL A\ y ' \ LLLLAALL) ' i ' \ UL UL ik ' b
|.n~acu-»l|1 “-“.'”- \ Y Vhes) BAREAL l‘ AN YXYYRY CEEN T e .' " »% Ol\ LA OSORN LARAAN |-|- Ty '-' .‘ ' A TR L | K T > 'H’“ ' ,'1 ll~‘ "'. O Y "”” PAR PP / A
0 ' ‘ L \ \ ! \ JRORR) b ' ' ' Wl | | U ') ! SR ' ‘
WOLARARALLCRAL LAKLCAN by VIRRAAN AN Ql‘. ALY ORI ' ‘." N . Y ' YA X iy U) \ArSe A | .' ' ",' et i\ AN ' ' ""” ,” ; bl e & .’.,,uu.a { T . i
UM ¥ AR W AAA A AR O \ ! Y | B/ ' ' A e UUUL U DOUCA AN Fave ol "IN PR y Y 1y '
Y ' fo ' \ LR e b X \ YY) i Vi ed
LK) n""' Wt ' ' Xy i " Y \ I R Y O B ' ' L) el Fedigas '
E \ ' Y ' . R ENNY ' \ ol "'_ Y VA DOSUCUUCLL RN A ol YA ‘“0"" f (N Y R p A YTy AN f d
\ AR -.‘ v\ AR VAL e OO A A ' ' AR l. ' el AN ULCRNE R AR UROCDOULURLA | . .',,,4', e ARALARK l ‘“"““,..:a. g '/ VRO '.,' 7 APARKE iy liveeldy
s (AR ' A ' b h ' n. ot) e ' ‘ gy
RN e NN " AR KA) A hebid ' ."',,, \ Y BRI A 0N p i T "‘ \ " UOLDOL V " 4:1 PA A ¢ XXRT ’
P Ve hoh hAY e Oy bl A N PPy ol URR \ YRR RN "‘ \ ' “' “, b |‘l"‘."“ [' " ua'r l" ’ oy ARS PN TR LY Js ‘ [
o 0 L) \ ' A | Vol OO K | OO i N AT AAE A)9 oo
RE R ERIIE AL ' i N) TSI . Ll | ' ' ' LR} J ” LR | ' |
WALAARLR RO ' Ao C AN ', ' T Y U " AANAA X ',. 0RO LOUUULE K AR YOO NI AP PP PSP AR ty ' f
‘uunu\lnn SR RN A ' A '“'.‘“.-'..‘,1..‘.‘.-\ |‘-.|. (L) ' u"“"”” Pl "li" "..‘ Y ,lnlvl !H' ' ‘,,,,‘.. o.u' AN p ') ’ ’
' VR AN ' Ve \ \ y LR | ' ' J ' ‘o
\ A ' YR Ve) \ TS) QLR N VI IN ' YT s
“"""“”‘ \.l” 4 b Ve l"' “" LA AN """‘ H“"“‘|' Y I"”“" ARHA ' "uu nv‘ AR LA |”|“l.. UL MY y "" / O Y YT T
\ ' ') ' jnc" 1 ‘i ov ! ’ IR R ')
RN AL AR ') ' A LA (YY1 ..|.an-l 1049 by AR e ' ’) ' YR/ RN N ‘e p p ' f
"‘““ “‘-'- e \ "% LA AL """"' ' .'.') Wl U\ A -.y"ll USUULRA AR ‘!'«'w UULLCRY "‘I ' u‘ u'i' """“.‘I“t‘ ! " WA A ‘,:""a-v'.u‘ JAAARI LA .‘.;'- ”'.” 'Y
\J ’] (R} Y 4 (B ' ' ‘" ’ '
Hl_,..,.\. LR R ‘. VYW b RN “.‘-‘ A SIEEY ,.“.“‘ ‘ y U Ty .. '”_.I. ,, .ullut ' “.,“ ;,laH‘i ’ A ,'. Ay YT Yy oid
IR e TIRREE ' I YEY \ " ' (R ' .‘”.,,.4.11 U ““,,, " felhin YUY ,.,..,.nt ! Y (
URARARA) TLRIANIEEE bile ' LR ' “_,..OAIH' ' “,,;ntvl') lt' YRR (L TR TR Y
I IENIY WAL A " A A 4 | ' ' \) RN KN Y N .‘n‘-‘”“.” ‘.'..u) ”“"'. ', nn"‘ It -.-.:' ST e ' LA
ARSI DA ' 'y ' ' v J L) ') G ' ' o !
A SN \ A M ' \ L O T LY R A S CEY ' """' ' oo ...|.'uu' ' J el ',,,,...,n- “‘,"" ' ,“,‘,...: (RO AR/ AR ' Frvrapensineovonadded N0
Y ' '_.,, R YY) \ N AL XY Y LN Peatpinibnny AXK o A ‘..onnr“" ' '“.“”,.,,-Ht ' ,:a R ./’ YOl TRETY) A . /
|‘>~"““ R O e o ooy "”‘...‘s“t-'vl--l AALARBARALAASLLA R VULV L ‘. S Y TYYT n..u-t-' '.""'lq'. X Y "-a-. --'l““l.".‘ " "I'II“(I'l'N" ' Voo ' q 7 g,
0 13 ' \ oy AR . i Pohey Al | ' AL ' ‘ ' £ ’
“‘.'“,,\... AR EARRLE WUSUOUMACAN bt K IOURCOOKX '“,',..‘..- .|.|.|c;' ARG ARLL AN "'gll '.u' SOCKCORCLOR Y "l ““““”.”“."”“,”“,.' e, ,,., ‘ S o) RRHA e AV PRA S A A
<n 'y UULRR ’) REEEARIY) \ \ ' .|: ' ' ’ ' '
' RN PAas A \ ' RO ' [e ' ;o
Y " OO ' ’ AT Ny 01001'0"' AAOAWVAAAAIAR ‘ .”..l'l.‘.‘“l""".' ' “"“','.““"”. -""" '1‘ OO) dhadlonds i Traeegs
A \ . --n't" ' ’ ' i ' \ AN USIUCA R ' ’ ' i ’] fie
» ' Fhas f T \ ll , ol) ‘ .:u-' ' ob
NV ""“"' WOV A VL ""“.‘n- O RO '.'”.'l%ONHIN"N'"llll.“l"””"‘“““ e ! y l N l‘.tl ."' ""ul.”"‘ \ . e e AL “““,{v"" A iy W ARA AL, Y’ '
LA RE) y ’) ' \ Y UL I LR Y |v' ,...'-'0 ,..uu' ' UOA I ,,‘,. UL AR T fioo o (
' CRRR i SO R e 1Y 1 YRR Y] e ,.' RN R '.'.,,“vvc) " f ity ’d 190 " i franini '
.\..I- URAARR s ia S VA Yol Y on RN 'y AN ' ‘. LA | YA A'.oi'- | s .,,‘ '..-l‘ ' Y A |,¢~|.ln' LR 1de PPl ,..yu ' f f ’
OB UDUOSA R oAMN " ko ARy N ' A Y ' VUL e """' ") o.uv ' """ vr"" Y ' figeniiny
SR Y AR YR SOMEALRY ARARER A .,' ! (Rl) ..| “”‘) '”..‘,..-u.n |-a.l|ln . ““' ,|,.|.o '”_.I, , | [A 5 ,;|~IH' “”,", | ”'“"‘_,', Y .' s .
Y ' ' X)) ' f LA . ' .-~|'t 'H" %y ‘e ' A ,..,hH‘ X M "" ' 9 ‘ " Ty
ACUUOA ALV X .',."..n.nnw-n' AN SR AR B AN LA “ .,l YY) o "".""' A4 V ”".,,.,. uu " "." PRARRAA u:. -ull' '“',,,,.,,...u L ¢ L
) YERLL) \ " ') \ ' \ ' ..un-t|’ LA 194 \ ' ,,..:.ll lv) (RN ’ ' Y I) ‘
3) \ \ IR R ...u .nul ... ov ST
ahany A “““,v,... u\'\. A ARLALSRLIEN R Y ‘ -|" AAMARAAMA ..,.... RO (X% “”“..“.) “-" l A v,..”v““” .,,, ,,':n ! SRR IO e ' ‘"
N JOLRA R LRAAAA RN IYNY U . .-utu -"“"""'.‘. O P! TN 000G Y YOy, ' / Ty ‘4 (AL
|-..s~|.|- rrm [) ' U . TR LR RN biash et “ .,,,.: p '
UROCCR IBOND AWAASY R L RO RO | ' AR TR "' ' / | bohd
R TN A LERY] ' TR Yy ' / '
' .uln-... AN ‘IllCQ' ', AN \ c:-. 0 '. A .' .'“ e ‘o }:-'0 | ”,,...nv'. ‘l n' .‘
e o \ ' ‘ !
-‘ft’ .."‘.. Y LR R LA "h.'o“' " .‘. URL) Ry l.l | |' U \ '“‘ U) ‘u'l‘u) v""" ’ "-Il‘ AL ' e
' WAL ' U U ’ ’
' | e \ U | ' Y |) ‘i ") T
Y N AL L "|'. Y\ UK) . ' ', .‘-l..cn UL ”"'.”. '|| ""'n.n.n:l“" .'-u, LY '
) ! ' . " ' ' '
\ IR .- LY AT ,I‘“,. ,|,..”|| ”'”‘“ " .,' .n.l“..“., f A) |l-ll":'. . {
LA RN R T Y A" > U YY) "ll!l""' P ' “',' ..,,.,‘ ,,:u‘" A
VA ' O ‘ \ Wy 0 -- ' Y § “ '
YA ,",\..u UCDRU Ry "' \ ‘ \ ,'..,..nlnuh""'"",. " ‘,.|t"||l"' A A '
\ I K ' AL AAAY Ty | |nl l""“"" U Y G u'-uunl:l NPE po i LR
ARICRL Vg ALCAUULURARR Al ' /
AR AR OO) Y Ve ™ " ‘i Y ..:.nll 0)) Ty '
AR \ ORARODCRXX .‘....- OROENRY’ u--- ||I‘l| A OOROO00EN ‘.“l |,u||c.-a|!n‘ ALK ,.'.’-Hl n.l'v‘l AANAL , “,'”‘,,..“- """""'”, o CERE
' WA iy U0 AL YT Y e VoA iy]nn-" \) (OCCREN l""' R R R
. LD \ URUUUUUSIUE) 4 .;. .un J "' Parabg J Y YY) unln | ' l-' . il sivsdiids '
P OURLEN 4 Vi Ve VRRRUANRER S I ‘un M '»“. '“',.....-o) uo.nnno K nn',u. \ ul,,',,'.'..“c.nll'-"' "'“ " I "{ / ", AARNI RS AV A .:u; 7
e \ , " 220 v) J ' ¢ onn " ' ,. .| ' (', ' ,,- o
‘ '“‘ I " “‘_‘.. \) ‘.. ”. .',,‘,..un..vc-nu ' o~0'l." ‘ H‘.I y ' '"" ”,.|.'-n‘| Huai-l l ll .‘ YY) ‘.. .‘,{‘l‘ll/{.‘ “ / ' "‘,"‘ "',','.,..' l.-n o AR AT .
s A \ ' ' e . ' ' ' " . £ Line
, .o-- \ lul
LU OROOCE RN RO { .||.“‘“' ‘|.‘”,,,........|--|‘-.'. \ .‘I.H)“ M ”'l.l A ,,,.,‘.‘““““““' A TSN 0 F
\ e U ‘ |~| l\ U \ LEARN] ' '
\ “.. ...‘.“ o\ Y XL .-\l‘ A\ o ..‘.- 1 '\‘ |~“| (X211 A '\ ‘.'. .l" “. AAAA n.Hi_" ll‘!lr .
\ ' AR \ .,\||nnn A \"‘l" “"""' UL RUOUSLR I!\'l|‘ “'.',‘ a .
L] . ' LA}
‘o Q AR T RAAS O YO n-N"“' "".“.' ”ul- e
"'\ \ X ”..‘,u..-n-n "“I" N XY R SR LEL
A OAK P
PaRRAIY YN \
cal ekt

— Huffman’s Tree Example
ombine two entries of the table to form parent node.

This is Huffman's tree

Huffman’s Tree Example

For encoding, the left branch is encoded as 0 and right branch as 1.

Huffman’s Coding Complexity

1. The time complexity for encoding each unigue character

based on Its frequency is O(nlog n).

2. Extracting minimum frequency from the priority queue
takes place 2*(n-1) times and its complexity is O(log n).

Thus the overall complexity i1s O(nlog n).

Applications of Huffman’s Coding

1. Huffman coding Is used in conventional compression

formats like GZIP, BZIP2, PKZIP, etc.

2. For text and fax transmissions.

Binary tree vs Binary search tree

Points Binary Tree Binary Search Tree
A Binary Tree Is a non-linear
data structure in which a A Binary Search Tree Is an
. .. hode can have 0, 1 or 2 organized binary tree with a
Definit . L
o nodes. I”d_lVlduaIIy, each_ structured organization of
node consists of a left pointer, nodes. Each subtree must also
right pointer and data be of that particular structure.
element.
The values of left subtree of a
Struct There_is no required particular node should be
Jre organization structure of the lesser than that node and the

nodes In the tree.

right subtree values should be

greater.

Binary tree vs Binary search tree

points Binary Tree Binary Search Tree
(_)pera The operations that can be As these are sorted binary
tions verformed are deletion trees, the_y are _used for fast
Perfor sertion and traversal ’ and efficient binary search,
med Insertion and deletion.
There are several types. Most
common ones are the The most popular ones are

Types Complete Binary Tree, Full AVL Trees, Splay Trees,
Binary Tree, Extended Binary Tango Trees, T-Trees.
Tree

Threaded Binary Tree

1. The i1dea of threaded binary trees Is to make Inorder
traversal faster and do It without stack and without

recursion.

2. A binary tree 1s made threaded by making all right
child pointers that would normally be NULL point to

the Inorder successor of the node (if It exists)

Threaded Binary Tree

In the linked representation of binary trees, more than one
half of the link fields contain NULL values which results in
wastage of storage space. If a binary tree consists of n nodes
then n+1 link fields contain NULL values. So In order to
effectively manage the space, a method was devised by Perlis
and Thornton in which the NULL links are replaced with
special links known as threads. Such binary trees with threads
are known as threaded binary trees. Each node In a
threaded binary tree either contains a link to its child node or

thread to other nodes In the tree.

Threaded Binary Tree

|
e Wi

Threaded binary tree

Threaded Binary Tree

Dala
Value

THREADED BINARY TREE

Threaded Binary Tree

There are two types of threaded binary trees.

Single Threaded: Where a NULL right pointers Is made to

point to the Inorder successor (if successor exists)

Double Threaded: Where both left and right NULL pointers
are made to point to Inorder predecessor and Inorder
successor respectively. The predecessor threads are useful for

reverse Inorder traversal and postorder traversal.

Threaded Binary Tree

Single Threaded Binary Tree

Threaded Binary Tree

—M

EON, OGN

Y Y Y
HCH EGE EGE

A binary tree (Inorder traversal - D, B E, A, C.F)

Y
XD

il

A

A

e |

XC g

Y
LGS

Arright - threaded binary tree

Threaded Binary Tree

Double Threaded Binary Tree

Threaded Binary Tree
—AR- 1ﬂ}

=5/ B

G 1@[lal

Y Y Y :
IB0 EEN. EEO .E. Iﬁl .ﬂ.
X X

1

I 1

1 i

i |
i I
1 L}
Y 7

A binary tree (Inorder traversal - D, B.E,C, A C F) A two - way threaded binary tree

Threaded Binar-y Tree

F
- =
----- -‘ 1-‘--
- L
.___r .
By
am® g
Tm
=

Two-way threaded - tree with header node

Insertion in Threaded Binary Tree

Insertion In Binary threaded tree Is similar to insertion In

binary tree but we will have to adjust the threads after

Insertion of each element.
Case 1: Insertion in empty tree
Case 2: When new node Inserted as the left child

Case 3: When new node Is inserted as the right child

Insertion in Threaded Binary Tree

Following example show a node being inserted as left child
of Its parent.

20 Inorder: 51014 16 17 20 30

v Insert 13

Insertion in Threaded Binary Tree

After insertion of 13 element

Inorder: 51013 14 16 17 20 30

13 inserted as left child of 14

k L
% L"'I-_
L] .
L]
1
1
1
' 30
i
i
i
L
k
1
l‘--.--.
_—-||.——l.__.___||___.__. .
-
‘1
5
k!
L]
bl

Insertion in Threaded Binary Tree

Following example shows a node being Inserted as right
child of its parent.

20 Inorder: 510 14 16 17 20 30

v Insert 15

Insertion in Threaded Binary Tree
After 15 inserted

Inorder: 510 14 16 17 20 30
15 inserted as right child of 14

Deletion in Threaded Binary Tree

In deletion, first the key to be deleted Is searched, and then
there are different cases for deleting the Node in which key Is

found.
Case A: Leaf Node need to be deleted
Case B: Node to be deleted has only one child

Case C: Node to be deleted has two children

Deletion in Threaded Binary Tree

Case A: Leaf Node need to be deleted

In BST, for deleting a leaf Node the left or right pointer of
parent was set to NULL. Here instead of setting the pointer to

NULL 1t 1Is made a thread.

If the leaf Node Is to be deleted Is left childs of Its parent
then after deletion, left pointer of parent should become a
thread pointing to its predecessor of the parent Node after

deletion.

Deletion in Threaded Binary Tree

Case B: Node to be deleted has only one child

After deleting the Node as In a BST, the Inorder successor

and Inorder predecessor of the Node are found out.

Deletion in Threaded Binary Tree

Case C: Node to be deleted has two children :

We find inorder successor of Node ptr (Node to be deleted)
and then copy the information of this successor into Node
ptr. After this inorder successor Node Is deleted using either

Case A or Case B

Deletion in Threaded Binary Tree

Case A: Leaf Node need to be deleted

Delete 14
Inorder; 510 14 16 17 20 30 Inorder; 51016 1720 30

Deletion in Threaded Binary Tree

Case A: Leaf Node need to be deleted

Delete 1]
Inorder: 51014 16 1720 30 Inorder: 510 14 16 20 30

Deletion in Threaded Binary Tree

Case B: Node to be deleted has only one child

Delete 16
Inorder: 51014 16 17 20 30 Inorder: 510 13 14 15 20 30

Deletion in Threaded Binary Tree

Case B: Node to be deleted has only one child

Delete 30

Inorder: 525 30 34 38 39 50 Inorder: 5 25 34 38 39 50

Advantages Threaded Binary Tree

1.
2.

In this Tree 1t enables linear traversal of elements.

It eliminates the use of stack as It perform linear traversal, so
save memory.

Enables to find parent node without explicit use of parent
pointer

Threaded tree give forward and backward traversal of nodes by
In-order fashion

Nodes contain pointers to in-order predecessor and successor.

In threaded binary tree there Is no NULL pointer present.
Hence memory wastage in occupying NULL links Is avoided.

There I1s no need of stack while traversing the tree, because
using thread links we can reach to previously visited nodes.

Disadvantages Threaded Binary Tree

1. This makes the Tree more complex .

2. Insertion and deletion operation becomes more

difficult.

3. Tree traversal algorithm becomes difficult.

4. Memory required to store a node increases. Each
node has to store the information whether the links Is

normal links or threaded links.

Disadvantages Threaded Binary Tree

5. When implemented, the threaded binary tree needs to
maintain the for each node to Indicate whether the
link field of each node points to an ordinary node or the

node's successor and predecessor.

6. Insertion Into and deletion from a threaded binary
tree are more time consuming since both threads and

ordinary links need to be maintained.

Applications Threaded Binary Tree

1. Expression parsing. Easy evaluation of mathematical

expressions through the use of expression parsing.

2. Database indexing: Finding Information quickly in indexed

databases.

3. Threaded In-order traversal: Ordered threads implementing

quick and responsive user interfaces are crucial.

4. Symbol table management: In a compiler or Interpreter,
threaded binary trees can be used to store and manage symbol

tables for variables and functions.

Applications Threaded Binary Tree

5. Navigation of hierarchical data: In certain applications,
threaded binary trees can be used to navigate hierarchical data

structures, such as file systems or web site directories.

6. Fast Searching and Retrieval: Threaded binary trees enable

faster navigation, improving the performance of search operations

/. Threaded Tree-based Iterators: Threaded trees are useful for
Implementing efficient iterators for various tree traversal orders

8. Binary Search Tree Operations: Threaded trees enhance
efficiency In operations like finding minimum/maximum elements
or predecessors/successor

References

https://www.]avatpoint.com/depth-first-search-algorithm

nttps://www.javatpoint.com/breadth-first-search-algorithm

nttps://www.javatpoint.com/threaded-binary-tree

= o)) N

nttps://www.codingninjas.com/studio/library/understanding-

threaded-binary-trees

https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/depth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/breadth-first-search-algorithm
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.javatpoint.com/threaded-binary-tree
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees
https://www.codingninjas.com/studio/library/understanding-threaded-binary-trees

THANK YOU!!!

My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

https://anandgharu.wordpress.com/

