
“HASHING”

Prepared By

Prof. Anand N. Gharu
(Assistant Professor)

 Computer Dept.

15 January 2024

.

CLASS : SE COMPUTER 2019

SUBJECT : DSA (SEM-II)

UNIT : I

Note: The material to prepare this presentation has been taken from internet and are generated only

for students reference and not for commercial use. 1

SYLLABUS

Hash Table- Concepts-hash table, hash function, basic operations,

bucket, collision, probe, synonym, overflow, open hashing, closed

hashing, perfect hash function, load density, full table, load factor,

rehashing, issues in hashing, hash functions- properties of good

hash function, division, multiplication, extraction, mid-square,

folding and universal, Collision resolution strategies- open

addressing and chaining, Hash table overflow- open addressing and

chaining, extendible hashing, closed addressing and separate

chaining.

Skip List- representation, searching and operations- insertion,

removal

SYLLABUS

INTRODUCTION

UNIT-I

HASHING

1. Hashing is finding an address where the data is

to be stored as well as located using a key with

the help of the algorithmic function.

2. Hashing is a method of directly computing the

address of the record with the help of a key by

using a suitable mathematical function called

the hash function

3. A hash table is an array-based structure used to

store <key, information> pairs

INTRODUCTION

4. Hash Table: A hash table is a data structure that

stores records in an array, called a hash table. A

Hash table can be used for quick insertion and

searching.

INTRODUCTION

key

Hash(key) Address

Fig 11.1:Hashing Concept

• The resulting address is used as the basis for

storing and retrieving records and this address is

called as home address of the record

• For array to store a record in a hash table, hash

function is applied to the key of the record

being stored, returning an index within the

range of the hash table

• The item is then stored in the table of that index

position

INTRODUCTION

• Hashing is a well-known technique to search any particular

element among several elements.

• It minimizes the number of comparisons while performing the

search.

Advantage-

1. Hashing is extremely efficient.

2. The time taken by it to perform the search does not depend upon

the total number of elements.

3. It completes the search with constant time complexity O(1).

Hashing

• Hashing Mechanism -

1. An array data structure called as Hash table is used to store the data

items.

2. Based on the hash key value, data items are inserted into the hash table.

• Hash Key Value -

1. Hash key value is a special value that serves as an index for a data

item.

2. It indicates where the data item should be be stored in the hash table.

3. Hash key value is generated using a hash function.

Hashing

• Hashing Mechanism :

Hashing

• Hash Fuction :

1. Hash function takes the data item as an input and returns a small

integer value as an output.

2. The small integer value is called as a hash value.

3. Hash value of the data item is then used as an index for storing it

into the hash table.

Types of Hash Functions-

There are various types of hash functions available such as-

1. Mid Square Hash Function

2. Division Hash Function

3. Folding Hash Function etc

It depends on the user which hash function he wants to use.

Hashing

• A hash table is a data structure that stores records in an array,

called a hash table. A Hash table can be used for quick insertion

and searching.

HASH TABLE

• Hash table is one of the most important data structures that

uses a special function known as a hash function that maps

a given value with a key to access the elements faster.

• A Hash table is a data structure that stores some

information, and the information has basically two main

components, i.e., key and value. The hash table can be

implemented with the help of an associative array. The

efficiency of mapping depends upon the efficiency of the

hash function used for mapping.

HASH TABLE

Here, are pros/benefits of using hash tables:

1. Hash tables have high performance when looking up data,

inserting, and deleting existing values.

2. The time complexity for hash tables is constant regardless

of the number of items in the table.

3. They perform very well even when working with large

datasets.

ADVANTAGES OF HASH TABLE

Here, are cons of using hash tables:

1. You cannot use a null value as a key.

2. Collisions cannot be avoided when generating keys using.

hash functions. Collisions occur when a key that is already

in use is generated.

3. If the hashing function has many collisions, this can lead

to performance decrease.

DISAVANTAGES OF HASH TABLE

Here, are the Operations supported by Hash tables:

1. Insertion – this Operation is used to add an element to the

hash table

2. Searching – this Operation is used to search for elements

in the hash table using the key

3. Deleting – this Operation is used to delete elements from

the hash table

OPERATIONS OF HASH TABLE

Real-world Applications

In the real-world, hash tables are used to store data for

1. Databases

2. Associative arrays

3. Sets

4. Memory cache

APPLICATIONS OF HASH TABLE

a) Easy to compute : It should be easy to compute and must not become an

algorithm in itself.

b) Uniform distribution : It should provide a uniform distribution across the

hash table and should not result in clustering.

c) Less collisions : Collisions occur when pairs of elements are mapped to

the same hash value. These should be avoided.

d) Be easy and quick to compute.

e) Use all the information provided in the key

CHARACTRISTICS OF HASH FUNCTION

1) Hash function should be simple to computer.

2) Number of collision should be less

2) The hash function uses all the input data.

3) The hash function "uniformly" distributes the data across

the entire set of possible hash values.

4) The hash function generates very different hash values for

similar strings.

PROPERTIES OF HASH FUNCTION

• A function that maps a key into the range [0 to Max − 1], the

result of which is used as an index (or address) to hash table for

storing and retrieving record

• The address generated by hashing function is called as home

address

• All home addresses address to particular area of memory and that

area is called as prime area

HASH FUNCTION

• Bucket is an index position in hash table that can store more than

one record

• When the same index is mapped with two keys, then both the

records are stored in the same bucket

BUCKET

• The result of two keys hashing into the same address is called

collision

COLLISION

• Each calculation of an address and test for success is known as

Probe.

PROBE

• Keys those hash to the same address are called synonyms

SYNONYMS

• The result of more keys hashing to the same address and if there

is no room in the bucket, then it is said that overflow has occurred

• Collision and overflow are synonymous when the bucket is of

size 1

OVERFLOW

• A perfect hash function h for a set S is a hash function that maps

distinct elements in S to a set of m integers, with no collisions.

• A perfect hash function with values in a limited range can be used

for efficient lookup operations, by placing keys from S (or other

associated values) in a table indexed by the output of the function.

Perfect Hash Function

• Advantages :

1. A perfect hash function with values in a limited range can be

used for efficient lookup operations.

2. No need to apply collision resolution techniques.

Perfect Hash Function

Load factor is defined as (m/n) where n is the total size of the hash

table and m is the preferred number of entries which can be inserted

before a increment in size of the underlying data structure is

required.

If Load factor (α) = constant, then time complexity of Insert,

Search, Delete = Θ(1)

LOAD FACTOR

• Load Factor: The ratio of the number of items in a

table to the table’s size is called the load factor.

• Load Density : The identifier density of a hash table

is the ratio n/T,

• where n is the number of identifiers in the table.

The loading density or loading factor of a hash table

is a=n /(sb).

• T is total number of possible element.

Load factor and Load density

• Load Density : The identifier density of a hash table

is the ratio n/T,

• Example :

• Consider the hash table with b = 26 buckets and s = 2.

We have n = 10 distinct identifiers, each representing

a C library function.

• This table has a loading factor, a, of 10/52 = 0.19

Load factor and Load density

• Hashing is one of the searching techniques that uses a constant time.

The time complexity in hashing is O(1). Till now, we read the two

techniques for searching, i.e., linear search and binary search

• The worst time complexity in linear search is O(n), and O(logn) in

binary search. In both the searching techniques, the searching depends

upon the number of elements but we want the technique that takes a

constant time. So, hashing technique came that provides a constant

time.

• In Hashing technique, the hash table and hash function are used.

Using the hash function, we can calculate the address at which the

value can be stored.

HASHING

• The main idea behind the hashing is to create the (key/value)

pairs. If the key is given, then the algorithm computes the index at

which the value would be stored. It can be written as:

• Index = hash(key)

HASHING/HASH FUNCTION

a) Division Method

b) Multiplication Method

c) Extraction Method

d) Mid square method

e) Folding

f) Universal Method

TYPES OF HASH FUNCTION

There are three ways of calculating the hash function:

1. Division method

2. Folding method

3. Mid square method

In the division method, the hash function can be defined as:

h(ki) = ki % m;

where m is the size of the hash table.

For example, if the key value is 6 and the size of the hash table is 10.

When we apply the hash function to key 6 then the index would be:

h(6) = 6%10 = 6

The index is 6 at which the value is stored.

TYPES OF HASH FUNCTION

1. Division Method:

This is the most simple and easiest method to generate a hash value. The

hash function divides the value k by M and then uses the remainder

obtained.

Formula:

h(K) = k mod M

Here,

k is the key value, and

M is the size of the hash table.

TYPES OF HASH FUNCTION

Example:

k = 12345

M = 95

h(12345) = 12345 mod 95

 = 90

k = 1276

M = 11

h(1276) = 1276 mod 11

 = 0

2. The mid square method is a very good hashing method. It

involves two steps to compute the hash value-

Square the value of the key k i.e. k2

Extract the middle r digits as the hash value.

Formula:

h(K) = h(k x k)

Here,

k is the key value.

TYPES OF HASH FUNCTION

Example:
Suppose the hash table has 100 memory locations.

So r = 2 because two digits are required to map the

key to the memory location.

k = 60

k x k = 60 x 60

 = 3600 (mid 60 for k=60)

h(60) = 60

The hash value obtained is 60

3. Digit Folding Method : This method involves two steps:

Divide the key-value k into a number of parts i.e. k1, k2, k3,….,kn, where each

part has the same number of digits except for the last part that can have lesser

digits than the other parts.

Add the individual parts. The hash value is obtained by ignoring the last carry if

any.

Formula:

k = k1, k2, k3, k4, ….., kn

s = k1+ k2 + k3 + k4 +….+ kn

h(K)= s

Here,

s is obtained by adding the parts of the key k

TYPES OF HASH FUNCTION

3. Digit Folding Method :

Example:

k = 12345

k1 = 12, k2 = 34, k3 = 5

s = k1 + k2 + k3

 = 12 + 34 + 5

 = 51

h(K) = 51

TYPES OF HASH FUNCTION

4. Multiplication method :

This method involves the following steps:

• Choose a constant value A such that 0 < A < 1.

• Multiply the key value with A.

• Extract the fractional part of kA.

• Multiply the result of the above step by the size of the hash table

i.e. M.

• The resulting hash value is obtained by taking the floor of the

result obtained in step 4.

TYPES OF HASH FUNCTION

4. Multiplication method :

Formula:

h(K) = floor (M (kA mod 1))

Here,

M is the size of the hash table.

k is the key value.

A is a constant value.

Where "k A mod 1" means the fractional part of k A, that is, k A -⌊k

A⌋.

TYPES OF HASH FUNCTION

4. Multiplication method :

Example:

k = 12345

A = 0.357840

M = 100

h(12345) = floor[100 (12345*0.357840 mod 1)]

 = floor[100 (4417.5348 mod 1)]

 = floor[100 (0.5348)]

 = floor[53.48]

 = 53

TYPES OF HASH FUNCTION

• Collision in Hashing-

 In hashing,

1. Hash function is used to compute the hash value for a key.

2. Hash value is then used as an index to store the key in the hash

table.

3. Hash function may return the same hash value for two or more

keys.

“When the hash value of a key maps to an already occupied

bucket of the hash table, it is called as a Collision”

Collision in Hashing

When the two different values have the same value, then the problem occurs

between the two values, known as a collision. In the above example, the value is

stored at index 6. If the key value is 26, then the index would be:

h(26) = 26%10 = 6

Therefore, two values are stored at the same index, i.e., 6, and this leads to the

collision problem. To resolve these collisions, we have some techniques known

as collision techniques.

The following are the collision techniques:

Open Hashing: It is also known as closed addressing.

Closed Hashing: It is also known as open addressing.

COLLISION

In Hashing, collision resolution techniques are classified as-

Collision Resolution Techniques

Separate Chaining
(Open hashing/External hashing)

The first Collision Resolution or Handling technique, " Open

Hashing ", is popularly known as Separate Chaining. This is a

technique which is used to implement an array as a linked list known

as a chain. It is one of the most used techniques by programmers to

handle collisions. Basically, a linked list data structure is used to

implement the Separate Chaining technique. When a number of

elements are hashed into the index of a single slot, then they are

inserted into a singly-linked list. This singly-linked list is the linked

list which we refer to as a chain in the Open Hashing technique.

OPEN HASHING

n Open Hashing, one of the methods used to resolve the collision is

known as a chaining method.

OPEN HASHING

1. Separate Chaining (hashing with chaining/open hashing)

To handle the collision,

1. This technique creates a linked list to the slot for which collision

occurs.

2. The new key is then inserted in the linked list.

3. These linked lists to the slots appear like chains.

4. That is why, this technique is called as separate chaining

Collision Resolution Techniques

For Searching-

• In worst case, all the keys might map to the same bucket of the

hash table.

• In such a case, all the keys will be present in a single linked list.

• Sequential search will have to be performed on the linked list to

perform the search.

• So, time taken for searching in worst case is O(n).

For Deletion-

• In worst case, the key might have to be searched first and then

deleted.

• In worst case, time taken for searching is O(n).

• So, time taken for deletion in worst case is O(n).

Collision Resolution Techniques

Advantages:

1) Simple to implement.

2) Hash table never fills up, we can always add more elements to the

chain.

3) Less sensitive to the hash function or load factors.

4) It is mostly used when it is unknown how many and how

frequently keys may be inserted or deleted. .

Collision Resolution Techniques

Disadvantages:

1) Cache performance of chaining is not good as keys are stored

using a linked list. Open addressing provides better cache

performance as everything is stored in the same table.

2) Wastage of Space (Some Parts of hash table are never used)

3) If the chain becomes long, then search time can become O(n) in

the worst case.

4) Uses extra space for links

Collision Resolution Techniques

Using the hash function ‘key mod 7’, insert the following

sequence of keys in the hash table-

50, 700, 76, 85, 92, 73 and 101.

Use separate chaining technique for collision resolution.

Collision Resolution Techniques

Step-01:

Draw an empty hash table.

For the given hash function, the

possible range of hash values is [0, 6].

So, draw an empty hash table consisting

of 7 buckets as-

Using the hash function ‘key mod 7’, insert the following

sequence of keys in the hash table-

50, 700, 76, 85, 92, 73 and 101.

Use separate chaining technique for collision resolution.

Collision Resolution Techniques

Step-02:

Insert the given keys in the hash table one

by one.

The first key to be inserted in the hash table

= 50.

Bucket of the hash table to which key 50

maps = 50 mod 7 = 1.

So, key 50 will be inserted in bucket-1 of

the hash table as-

Using the hash function ‘key mod 7’, insert the following

sequence of keys in the hash table-

50, 700, 76, 85, 92, 73 and 101.

Use separate chaining technique for collision resolution.

Collision Resolution Techniques

Step-03:

The next key to be inserted in the hash table

= 700.

Bucket of the hash table to which key 700

maps = 700 mod 7 = 0.

So, key 700 will be inserted in bucket-0 of

the hash table as-

Using the hash function ‘key mod 7’, insert the following

sequence of keys in the hash table-

50, 700, 76, 85, 92, 73 and 101.

Use separate chaining technique for collision resolution.

Collision Resolution Techniques

Step-04:

The next key to be inserted in the hash table

= 76.

Bucket of the hash table to which key 76

maps = 76 mod 7 = 6.

So, key 76 will be inserted in bucket-6 of

the hash table as-

Using the hash function ‘key mod 7’, insert the following

sequence of keys in the hash table-

50, 700, 76, 85, 92, 73 and 101.

Use separate chaining technique for collision resolution.

Collision Resolution Techniques

Step-05:

 The next key to be inserted in the hash table = 85.

Bucket of the hash table to which key 85 maps = 85

mod 7 = 1.

Since bucket-1 is already occupied, so collision

occurs.

Separate chaining handles the collision by creating a

linked list to bucket-1.

So, key 85 will be inserted in bucket-1 of the hash

table as-

Using the hash function ‘key mod 7’, insert the following

sequence of keys in the hash table-

50, 700, 76, 85, 92, 73 and 101.

Use separate chaining technique for collision resolution.

Collision Resolution Techniques

Step-06 :

The next key to be inserted in the hash table =

92.

Bucket of the hash table to which key 92 maps

= 92 mod 7 = 1.

Since bucket-1 is already occupied, so

collision occurs.

Separate chaining handles the collision by

creating a linked list to bucket-1.

So, key 92 will be inserted in bucket-1 of the

hash table as-

Using the hash function ‘key mod 7’, insert the following

sequence of keys in the hash table-

50, 700, 76, 85, 92, 73 and 101.

Use separate chaining technique for collision resolution.

Collision Resolution Techniques

Step-07 :

The next key to be inserted in the hash table =

73.

Bucket of the hash table to which key 73 maps

= 73 mod 7 = 3.

So, key 73 will be inserted in bucket-3 of the

hash table as-

Using the hash function ‘key mod 7’, insert the following

sequence of keys in the hash table-

50, 700, 76, 85, 92, 73 and 101.

Use separate chaining technique for collision resolution.

Collision Resolution Techniques

Step-08 :

The next key to be inserted in the hash table =

101.

Bucket of the hash table to which key 101

maps = 101 mod 7 = 3.

Since bucket-3 is already occupied, so

collision occurs.

Separate chaining handles the collision by

creating a linked list to bucket-3.

So, key 101 will be inserted in bucket-3 of the

hash table as-

Using the hash function ‘key mod 7’, insert the following

sequence of keys in the hash table-

50, 700, 76, 85, 92, 73 and 101.

Use separate chaining technique for collision resolution.

Collision Resolution Techniques

Let's first understand the chaining to resolve the collision.

Suppose we have a list of key values

A = 3, 2, 9, 6, 11, 13, 7, 12 where m = 10, and h(k) = 2k+3

In this case, we cannot directly use h(k) = ki/m as h(k) = 2k+3

The index of key value 3 is:

index = h(3) = (2(3)+3)%10 = 9

The value 3 would be stored at the index 9.

The index of key value 2 is:

index = h(2) = (2(2)+3)%10 = 7

The value 2 would be stored at the index 7.

OPEN HASHING

The index of key value 9 is:

index = h(9) = (2(9)+3)%10 = 1

The value 9 would be stored at the index 1.

The index of key value 6 is:

index = h(6) = (2(6)+3)%10 = 5

The value 6 would be stored at the index 5.

The index of key value 11 is:

index = h(11) = (2(11)+3)%10 = 5

The value 11 would be stored at the index 5.

OPEN HASHING

The index of key value 13 is:

index = h(13) = (2(13)+3)%10 = 9

The value 13 would be stored at index 9.

The index of key value 7 is:

index = h(7) = (2(7)+3)%10 = 7

The value 7 would be stored at index 7.

The index of key value 12 is:

index = h(12) = (2(12)+3)%10 = 7

The value 7 would be stored at index 7.

OPEN HASHING

OPEN HASHING

OPEN HASHING

OPEN HASHING
Let us say that we have a sequence of numbers { 437, 325, 175,

199, 171, 189, 127, 509} and a hash function H(X) = X mod 10

Let us see the results of separate chaining hash table.

OPEN HASHING

In Closed hashing, three techniques are used to resolve the

collision:

1. Linear probing

2. Quadratic probing

3. Double Hashing technique

CLOSED HASHING

PROBING
Method Description

Linear probing

Just like the name suggests, this method

searches for empty slots linearly starting from

the position where the collision occurred and

moving forward. If the end of the list is

reached and no empty slot is found. The

probing starts at the beginning of the list.

Quadratic

probing

This method uses quadratic polynomial

expressions to find the next available free slot.

Double

Hashing

This technique uses a secondary hash

function algorithm to find the next free

available slot.

Open addressing
(Close hashing/Internal hashing)

In open addressing,

1. Unlike separate chaining, all the keys are stored inside the hash

table.

2. No key is stored outside the hash table.

Techniques used for open addressing are-

1. Linear Probing

2. Quadratic Probing

3. Double Hashing

Open Addressing

Operations In open addressing,

1. Insert Operation-

• Hash function is used to compute the hash value for a key to be inserted.

• Hash value is then used as an index to store the key in the hash table.

In case of collision,

• Probing is performed until an empty bucket is found.

• Once an empty bucket is found, the key is inserted.

• Probing is performed in accordance with the technique used for open

addressing.

Open Addressing

Operations In open addressing,

Search Operation-

To search any particular key,

• Its hash value is obtained using the hash function used.

• Using the hash value, that bucket of the hash table is checked.

• If the required key is found, the key is searched.

• Otherwise, the subsequent buckets are checked until the required key or

an empty bucket is found.

• The empty bucket indicates that the key is not present in the hash table.

Open Addressing

Operations In open addressing,

Search Operation-

• The key is first searched and then deleted.

• After deleting the key, that particular bucket is marked as

“deleted”.

Open Addressing

1. Linear Probing-

1. When collision occurs, we linearly probe for the next bucket.

2. We keep probing until an empty bucket is found.

Advantage-

1. It is easy to compute.

Disadvantage-

1. The main problem with linear probing is clustering.

2. Many consecutive elements form groups.

3. Then, it takes time to search an element or to find an empty bucket.

Open Addressing Techniques

1. Linear Probing -

Open Addressing Techniques

Let us consider a simple hash function as “key mod 7” and a sequence of

keys as 50, 700, 76, 85, 92, 73, 101.

Linear Probing

Linear probing is one of the forms of open addressing. As we know

that each cell in the hash table contains a key-value pair, so when the

collision occurs by mapping a new key to the cell already

occupied by another key, then linear probing technique searches

for the closest free locations and adds a new key to that empty

cell. In this case, searching is performed sequentially, starting from

the position where the collision occurs till the empty cell is not

found.

CLOSED HASHING

Let's understand the linear probing through an example.

Consider the above example for the linear probing:

A = 3, 2, 9, 6, 11, 13, 7, 12 where m = 10, and h(k) = 2k+3

The key values 3, 2, 9, 6 are stored at the indexes 9, 7, 1, 5 respectively.

The calculated index value of 11 is 5 which is already occupied by another

key value, i.e., 6. When linear probing is applied, the nearest empty cell to

the index 5 is 6; therefore, the value 11 will be added at the index 6.

The next key value is 13. The index value associated with this key value is

9 when hash function is applied. The cell is already filled at index 9. When

linear probing is applied, the nearest empty cell to the index 9 is 0;

therefore, the value 13 will be added at the index 0

CLOSED HASHING

Let us consider a simple hash function as “key mod 7” and a

sequence of keys as 50, 700, 76, 85, 92, 73, 101.

LINEAR PROBING

Let us consider a simple hash function as “key mod 30” and a

sequence of keys as 3, 1, 63, 5, 11, 15, 18, 16, 46.

LINEAR PROBING

Chaining

(with /without

replacement)

In collision handling method chaining is a concept which introduces

an additional field with data i.e. chain. A separate chain table is

maintained for colliding data. When collision occurs, we store the

second colliding data by linear probing method. The address

of this colliding data can be stored with the first colliding element in

the chain table, without replacement.

Chaining Without Replacement

For example, consider elements:

131, 3, 4, 21, 61, 6, 71, 8, 9

Chaining Without Replacement

For example, consider elements:
Identifier is 11, 32, 41, 54, 33. Hash function: f(x) = X mod 10 and
Table size = 10

Chaining With Replacement

Chaining With Replacement

For example, consider elements:
 Identifier is 11, 32, 41, 54, 33.
Hash function: f(x) = X mod 10 and Table size = 10

Chaining Without Replacement

Chaining With Replacement

Chaining With Replacement

Chaining With Replacement

Chaining With Replacement

2. Quadratic Probing-

• When collision occurs, we probe for i2‘th bucket in ith iteration.

• We keep probing until an empty bucket is found.

Open Addressing Techniques

Quadratic Probing

• In case of linear probing, searching is performed linearly. In contrast,

quadratic probing is an open addressing technique that uses quadratic

polynomial for searching until a empty slot is found.

• It can also be defined as that it allows the insertion ki at first free

location from (u+i2)%m where i=0 to m-1.

h´ = (𝑥) = 𝑥 𝑚𝑜𝑑 𝑚

ℎ(𝑥, 𝑖) = (ℎ´(𝑥) + 𝑖2)𝑚𝑜𝑑 𝑚

We can put some other quadratic equations also using some constants

The value of i = 0, 1, . . ., m – 1. So we start from i = 0, and increase this

until we get one free space. So initially when i = 0, then the h(x, i) is same

as h´(x).

CLOSED HASHING

CLOSED HASHING

CLOSED HASHING
Let us consider a simple hash function as “key mod 7”

and sequence of keys as 50, 700, 76, 85, 92, 73, 101

If the slot hash(x) % S is full, then we try (hash(x) + 1*1) % S.

If (hash(x) + 1*1) % S is also full, then we try (hash(x) + 2*2) %

S.

If (hash(x) + 2*2) % S is also full, then we try (hash(x) + 3*3) %

S.

This process is repeated for all the values of i until an empty slot

is found.

QUADRATIC PROBING

QUADRATIC PROBING
Example: Let us consider table Size = 7, hash function as Hash(x) = x % 7

and collision resolution strategy to be f(i) = i2 . Insert = 22, 30, and 50.

QUADRATIC PROBING
Using Linear probing and Quadratic probing, insert the following values in

the hash table of size 10.Show how many collisions occur in each iterations

28, 55, 71, 67, 11, 10, 90, 44 (Linear Probing)

QUADRATIC PROBING
Using Linear probing and Quadratic probing, insert the following values in

the hash table of size 10.Show how many collisions occur in each iterations

28, 55, 71, 67, 11, 10, 90, 44

3. Double Hashing-

• We use another hash function hash2(x) and look for i * hash2(x)

bucket in ith iteration.

• It requires more computation time as two hash functions need to

be computed.

• Double hashing is a collision resolving technique in Open

Addressed Hash tables. Double hashing uses the idea of applying

a second hash function to key when a collision occurs.

Open Addressing Techniques

Double hashing : It is a collision resolving technique in Open

Addressed Hash tables. Double hashing uses the idea of applying a

second hash function to key when a collision occurs.

Advantages of Double hashing

1. The advantage of Double hashing is that it is one of the best form

of probing, producing a uniform distribution of records

throughout a hash table.

2. This technique does not yield any clusters.

3. It is one of effective method for resolving collisions

DOUBLE HASHING

Double hashing : A good second Hash function is:

1. It must never evaluate to zero

2. Must make sure that all cells can be probed

CLOSED HASHING

Double hashing :

Double hashing can be done using :

(hash1(key) + i * hash2(key)) % TABLE_SIZE

Here hash1() and hash2() are hash functions and TABLE_SIZE

is size of hash table.

(We repeat by increasing i when collision occurs)

First hash function is typically hash1(key) = key % TABLE_SIZE

A popular second hash function is : hash2(key) = PRIME – (key %

PRIME) where PRIME is a prime smaller than the TABLE_SIZE.

CLOSED HASHING

CLOSED HASHING

CLOSED HASHING

CLOSED HASHING

CLOSED HASHING

CLOSED HASHING

DOUBLE HASHING EXAMPLE

Double Hashing Example :

Imagine you need to store some items inside a hash table

of size 20. The values given are: (16, 8, 63, 9, 27, 37, 48,

5, 69, 34, 1).

h1(n)=n%20

h2(n)=n%13

n h(n, i) = (h1 (n) + ih2(n)) mod 20

Open Vs Close Hashing
Separate Chaining Open Addressing

Keys are stored inside the hash table as
well as outside the hash table.

All the keys are stored only inside the
hash table.

The number of keys to be stored in the
hash table can even exceed the size of
the hash table.

The number of keys to be stored in the
hash table can never exceed the size of
the hash table.

Deletion is easier. Deletion is difficult.

Extra space is required for the pointers
to store the keys outside the hash table.

No extra space is required.

Cache performance is poor.
This is because of linked lists which
store the keys outside the hash table.

Cache performance is better.
This is because here no linked lists are
used.

Some buckets of the hash table are
never used which leads to wastage of
space.

Buckets may be used even if no key
maps to those particular buckets.

Rehashing is a collision resolution technique.

Rehashing is a technique in which the table is resized, i.e., the size of

table is doubled by creating a new table. It is preferable is the total size

of table is a prime number. There are situations in which the rehashing is

required.

• When table is completely full

• With quadratic probing when the table is filled half.

• When insertions fail due to overflow.

In such situations, we have to transfer entries from old table to the new

table by re computing their positions using hash functions

Rehashing

Rehashing

As the name suggests, rehashing means hashing again.

Basically, when the load factor increases to more than its pre-

defined value (default value of load factor is 0.75), the

complexity increases. So to overcome this, the size of the

array is increased (doubled) and all the values are hashed

again and stored in the new double sized array to maintain a

low load factor and low complexity.

Rehashing

Why rehashing?

Rehashing is done because whenever key value pairs are

inserted into the map, the load factor increases, which implies

that the time complexity also increases as explained above.

This might not give the required time complexity of O(1).

Hence, rehash must be done, increasing the size of the

bucketArray so as to reduce the load factor and the time

complexity

Rehashing

How Rehashing is done?

Rehashing can be done as follows:

• For each addition of a new entry to the map, check the load

factor.

• If it’s greater than its pre-defined value (or default value of 0.75

if not given), then Rehash.

• For Rehash, make a new array of double the previous size and

make it the new bucket array.

• Then traverse to each element in the old bucket Array and call

the insert() for each so as to insert it into the new larger bucket

array.

Rehashing

• Hash Collisions: Hashing can produce the same hash value

for different keys, leading to hash collisions. To handle

collisions, we need to use collision resolution techniques

like chaining or open addressing.

• Hash Function Quality: The quality of the hash function

determines the efficiency of the hashing algorithm. A poor-

quality hash function can lead to more collisions, reducing

the performance of the hashing algorithm.

ISSUES IN HASHING

1. The dynamic hashing method is used to overcome the

problems of static hashing like bucket overflow.

2. In this method, data buckets grow or shrink as the records

increases or decreases. This method is also known as

Extendable hashing method.

3. This method makes hashing dynamic, i.e., it allows

insertion or deletion without resulting in poor

performance.

Extensible/Extendible Hashing

• How to search a key

1. First, calculate the hash address of the key.

2. Check how many bits are used in the directory, and these

bits are called as i.

3. Take the least significant i bits of the hash address. This

gives an index of the directory.

4. Now using the index, go to the directory and find bucket

address where the record might be.

Extensible/Extendible Hashing

• How to insert a new record

1. Firstly, you have to follow the same procedure for

retrieval, ending up in some bucket.

2. If there is still space in that bucket, then place the record

in it.

3. If the bucket is full, then we will split the bucket and

redistribute the records.

Extensible/Extendible Hashing

• For example :

Consider the following grouping of keys into buckets,

depending on the prefix of their hash address:

Extensible/Extendible Hashing

The last two bits of 2 and 4 are 00. So it will go into bucket B0. The

last two bits of 5 and 6 are 01, so it will go into bucket B1. The last

two bits of 1 and 3 are 10, so it will go into bucket B2. The last two

bits of 7 are 11, so it will go into B3.

Extensible/Extendible Hashing

Insert key 9 with hash address 10001 into the above structure:

1. Since key 9 has hash address 10001, it must go into the first bucket.

But bucket B1 is full, so it will get split.

2. The splitting will separate 5, 9 from 6 since last three bits of 5, 9 are

001, so it will go into bucket B1, and the last three bits of 6 are 101, so

it will go into bucket B5.

3. Keys 2 and 4 are still in B0. The record in B0 pointed by the 000 and

100 entry because last two bits of both the entry are 00.

4. Keys 1 and 3 are still in B2. The record in B2 pointed by the 010 and

110 entry because last two bits of both the entry are 10.

5. Key 7 are still in B3. The record in B3 pointed by the 111 and 011

entry because last two bits of both the entry are 11.

Extensible/Extendible Hashing

Extensible/Extendible Hashing

Advantages of Extensible Hashing

1. In this method, the performance does not decrease as the data

grows in the system. It simply increases the size of memory to

accommodate the data.

2. In this method, memory is well utilized as it grows and shrinks

with the data. There will not be any unused memory lying.

3. This method is good for the dynamic database where data grows

and shrinks frequently

Disadvantages of Extensible Hashing

1. In this method, if the data size increases then the bucket size is

also increased.

2. In this case, the bucket overflow situation will also occur. But it

might take little time to reach this situation than static hashing.

1. A skip list is a probabilistic data structure.

2. The skip list is used to store a sorted list of elements or

data with a linked list.

3. It allows the process of the elements or data to view

efficiently. In one single step, it skips several elements of

the entire list, which is why it is known as a skip list.

Skip List

4. The skip list is an extended version of the linked list.

5. It allows the user to search, remove, and insert the element

very quickly.

6. It consists of a base list that includes a set of elements

which maintains the link hierarchy of the subsequent

elements.

Skip List

Skip list structure

It is built in two layers: The lowest layer and Top layer.

The lowest layer of the skip list is a common sorted linked

list, and the top layers of the skip list are like an "express line"

where the elements are skipped.

Skip List

• Let's take an example to understand the working of the skip list. In this

example, we have 14 nodes, such that these nodes are divided into two

layers, as shown in the diagram.

• The lower layer is a common line that links all nodes, and the top layer is

an express line that links only the main nodes, as you can see in the

diagram.

• Suppose you want to find 47 in this example. You will start the search from

the first node of the express line and continue running on the express line

until you find a node that is equal a 47 or more than 47.

• You can see in the example that 47 does not exist in the express line, so

you search for a node of less than 47, which is 40. Now, you go to the

normal line with the help of 40, and search the 47, as shown in the

diagram.

Skip List

Skip List

Skip List Basic Operations

There are the following types of operations in the skip list.

1. Insertion operation: It is used to add a new node to a particular

location in a specific situation.

2. Deletion operation: It is used to delete a node in a specific

situation.

3. Search Operation: The search operation is used to search a

particular node in a skip list.

Skip List

Example 1: Create a skip list, we want to insert these following

keys in the empty skip list.

 Step 1: Insert 6 with level 1

1. 6 with level 1.

2. 29 with level 1.

3. 22 with level 4.

4. 9 with level 3.

5. 17 with level 1.

6. 4 with level 2.

Skip List

Example 1: Create a skip list, we want to insert these following

keys in the empty skip list.

 Step 2: Insert 29 with level 1

1. 6 with level 1.

2. 29 with level 1.

3. 22 with level 4.

4. 9 with level 3.

5. 17 with level 1.

6. 4 with level 2.

Skip List

Example 1: Create a skip list, we want to insert these following

keys in the empty skip list.

 Step 3: Insert 22 with level 4

1. 6 with level 1.

2. 29 with level 1.

3. 22 with level 4.

4. 9 with level 3.

5. 17 with level 1.

6. 4 with level 2.

Skip List

Example 1: Create a skip list, we want to insert these following

keys in the empty skip list.

 Step 4: Insert 9 with level 3

1. 6 with level 1.

2. 29 with level 1.

3. 22 with level 4.

4. 9 with level 3.

5. 17 with level 1.

6. 4 with level 2.

Skip List

Example 1: Create a skip list, we want to insert these following

keys in the empty skip list.

 Step 5: Insert 17 with level 1

1. 6 with level 1.

2. 29 with level 1.

3. 22 with level 4.

4. 9 with level 3.

5. 17 with level 1.

6. 4 with level 2.

Skip List

Example 1: Create a skip list, we want to insert these following

keys in the empty skip list.

 Step 6: Insert 4 with level 2

1. 6 with level 1.

2. 29 with level 1.

3. 22 with level 4.

4. 9 with level 3.

5. 17 with level 1.

6. 4 with level 2.

Skip List

Example 2: Consider this example where we want to search for

key 17.

Skip List

Example 2: Consider this example where we want to search for

key 17.

Skip List

1. If you want to insert a new node in the skip list, then it will insert

the node very fast because there are no rotations in the skip list.

2. The skip list is simple to implement as compared to the hash

table and the binary search tree.

3. It is very simple to find a node in the list because it stores the

nodes in sorted form.

4. The skip list algorithm can be modified very easily in a more

specific structure, such as indexable skip lists, trees, or priority

queues.

5. The skip list is a robust and reliable list.

Advantages of Skip List

1. It requires more memory than the balanced tree.

2. Reverse searching is not allowed.

3. The skip list searches the node much slower than the linked list.

Disadvantages of Skip List

1. Skip list are used in distributed applications. In distributed

systems, the nodes of skip list represents the computer systems

and pointers represent network connection.

2. Skip list are used for implementing highly scalable concurrent

priority queues with less lock contention (struggle for having a

lock on a data item)

Applications of Skip List

3. It is also used with the QMap template class. (

Value-based template class that provides a dictionary)

4. The indexing of the skip list is used in running median

problems.

5. skipdb is an open-source database format using ordered

key/value pairs.

Applications of Skip List

1. https://www.javatpoint.com/double-hashing-in-java

2. https://www.scaler.com/topics/quadratic-probing/

3. https://www.geeksforgeeks.org/quadratic-probing-in-hashing/

4. https://www.bucketstudy.com/2021/09/DSA01.html

5. https://www.upgrad.com/blog/hashing-in-data-structure/

6. https://quescol.com/data-structure/linear-probing

7. https://prac-code.blogspot.com/2013/06/chaining-without-

replacement.html

8. https://www.geeksforgeeks.org/open-addressing-collision-

handling-technique-in-hashing/

References

https://www.javatpoint.com/double-hashing-in-java
https://www.javatpoint.com/double-hashing-in-java
https://www.javatpoint.com/double-hashing-in-java
https://www.javatpoint.com/double-hashing-in-java
https://www.javatpoint.com/double-hashing-in-java
https://www.javatpoint.com/double-hashing-in-java
https://www.javatpoint.com/double-hashing-in-java
https://www.javatpoint.com/double-hashing-in-java
https://www.javatpoint.com/double-hashing-in-java
https://www.javatpoint.com/double-hashing-in-java
https://www.javatpoint.com/double-hashing-in-java
https://www.javatpoint.com/double-hashing-in-java
https://www.javatpoint.com/double-hashing-in-java
https://www.scaler.com/topics/quadratic-probing/
https://www.scaler.com/topics/quadratic-probing/
https://www.scaler.com/topics/quadratic-probing/
https://www.scaler.com/topics/quadratic-probing/
https://www.scaler.com/topics/quadratic-probing/
https://www.scaler.com/topics/quadratic-probing/
https://www.scaler.com/topics/quadratic-probing/
https://www.scaler.com/topics/quadratic-probing/
https://www.scaler.com/topics/quadratic-probing/
https://www.scaler.com/topics/quadratic-probing/
https://www.geeksforgeeks.org/quadratic-probing-in-hashing/
https://www.geeksforgeeks.org/quadratic-probing-in-hashing/
https://www.geeksforgeeks.org/quadratic-probing-in-hashing/
https://www.geeksforgeeks.org/quadratic-probing-in-hashing/
https://www.geeksforgeeks.org/quadratic-probing-in-hashing/
https://www.geeksforgeeks.org/quadratic-probing-in-hashing/
https://www.geeksforgeeks.org/quadratic-probing-in-hashing/
https://www.geeksforgeeks.org/quadratic-probing-in-hashing/
https://www.geeksforgeeks.org/quadratic-probing-in-hashing/
https://www.geeksforgeeks.org/quadratic-probing-in-hashing/
https://www.geeksforgeeks.org/quadratic-probing-in-hashing/
https://www.geeksforgeeks.org/quadratic-probing-in-hashing/
https://www.geeksforgeeks.org/quadratic-probing-in-hashing/
https://www.geeksforgeeks.org/quadratic-probing-in-hashing/
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.bucketstudy.com/2021/09/DSA01.html
https://www.upgrad.com/blog/hashing-in-data-structure/
https://www.upgrad.com/blog/hashing-in-data-structure/
https://www.upgrad.com/blog/hashing-in-data-structure/
https://www.upgrad.com/blog/hashing-in-data-structure/
https://www.upgrad.com/blog/hashing-in-data-structure/
https://www.upgrad.com/blog/hashing-in-data-structure/
https://www.upgrad.com/blog/hashing-in-data-structure/
https://www.upgrad.com/blog/hashing-in-data-structure/
https://www.upgrad.com/blog/hashing-in-data-structure/
https://www.upgrad.com/blog/hashing-in-data-structure/
https://www.upgrad.com/blog/hashing-in-data-structure/
https://www.upgrad.com/blog/hashing-in-data-structure/
https://www.upgrad.com/blog/hashing-in-data-structure/
https://www.upgrad.com/blog/hashing-in-data-structure/
https://quescol.com/data-structure/linear-probing
https://quescol.com/data-structure/linear-probing
https://quescol.com/data-structure/linear-probing
https://quescol.com/data-structure/linear-probing
https://quescol.com/data-structure/linear-probing
https://quescol.com/data-structure/linear-probing
https://quescol.com/data-structure/linear-probing
https://quescol.com/data-structure/linear-probing
https://quescol.com/data-structure/linear-probing
https://quescol.com/data-structure/linear-probing
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://prac-code.blogspot.com/2013/06/chaining-without-replacement.html
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/
https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/

9. https://www.ques10.com/p/32048/using-linear-probing-and-

quadratic-probing-insert-/

10. https://dev.to/aws-builders/intro-into-hashing-3nf6

References

https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://www.ques10.com/p/32048/using-linear-probing-and-quadratic-probing-insert-/
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6
https://dev.to/aws-builders/intro-into-hashing-3nf6

THANK YOU!!!
My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

https://anandgharu.wordpress.com/

