
“RUBY AND RAILS, EJB”

Prepared By

Prof. Anand N. Gharu
(Assistant Professor)

 Computer Dept.

25 April 2023

.

CLASS : TE COMPUTER 2019

SUBJECT : WT (SEM-II)

UNIT : VI

Note: The material to prepare this presentation has been taken from internet and are generated only for students reference and not for

commercial use.

Introduction to Ruby: Origins & uses of Ruby, scalar types and

their operations, simple input and output, control statements,

fundamentals of arrays, hashes, methods, classes, code blocks and

iterators, pattern matching.

Introduction to Rails: Overview of Rails, Document Requests,

Processing Forms, Rails Applications and Databases, Layouts,

Rails with Ajax.

Introduction to EJB.

SYLLABUS

Syllabus

Ruby :

● Introduction to Ruby:
● Origins & uses of Ruby,
● Scalar types and their

operations,
● Simple input and output,
● control statements,
● fundamentals of arrays,
● hashes, methods, classes,
● code blocks and iterators,
● Pattern matching

EJB

● Introduction to

EJB.

Rail

● Introduction to Rails:
● Overview of Rails,
● Document Requests,
● Processing Forms,

● Rails Applications
and Databases,

● Layouts,
● Rails with Ajax.

INTRODUCTION

TO

RUBY

Ruby- Origins and Uses of Ruby

● -Ruby is "A Programmer's Best Friend".

● -Designed by Yukihiro Matsumoto; released in 1996

● - Use spread rapidly in Japan

● - Use is now growing in part because of its use in Rails

● - A pure object-oriented purely interpreted scripting language

● - Related to Perl and JavaScript, but not closely

Features of ruby

● Ruby is an open-source and is freely available on the Web, but it is subject to a license.

● Ruby is a general-purpose, interpreted programming language.

● Ruby is a true object-oriented programming language.

● Ruby is a server-side scripting language similar to Python and PERL.

● Ruby can be embedded into Hypertext Markup Language (HTML).

● Ruby has a clean and easy syntax that allows a new developer to learn very quickly and

easily.

● Ruby is very much scalable and big programs written in Ruby are easily maintainable.

● Ruby can be used for developing Internet and intranet applications.

● Ruby can be installed in Windows and POSIX environments.

● Ruby support many GUI tools such as Tcl/Tk, GTK, and OpenGL.

● Ruby can easily be connected to DB2, MySQL, Oracle, and Sybase.

● Ruby has a rich set of built-in functions, which can be used directly into Ruby scripts.

RUBY –

Scalar Data Type

Ruby- Data Types

2.

Arrays
3.

Hashes
1.

Scalar

4.

Boolean

5.

Symbols

Ruby- Data Types

1.

Scalar

Strings
Numbers

/

Numeric

Ruby- Scalar Data Types

1.

Scalar

Strings
Numbers

/

Numeric

BigNum - int

FixNum- int

Float

Ruby- Data Types- Strings

Strings:

A string is made up of multiple characters.

They are defined by enclosing a set of characters within single

(‘x’) or double (“x”) quotes.

Ruby- Data Types- Numbers

Numbers :

● A number is a series of digits that use a dot as a decimal

mark (where one is required).

● Integers and floats are the two main kinds of numbers; Ruby

can handle them both.

Ruby- Data Types- Boolean

Booleans :

● The Boolean data type represents only one bit of information that says whether

the value is true or false.

● A value of this data type is returned when two values are compared.

● In Ruby there are three main boolean operators:

○ ! which represents “NOT”,

○ && represents “AND”

○ || represents “OR”.

○ == for compare two values

Ruby- Data Types- Arrays

Arrays
● An array can store multiple data items of all types.

● Items in an array are separated by a comma in-between
them and enclosed within square brackets.

● The first item of the array has an index of 0

Ruby- Data Types- Hashes

Hashes

● A hash stores key-value pairs.

● Assigning a value to a key is done by using the => sign.

● Key-value pairs are separated by commas, and all the pairs are

enclosed within curly braces.

Ruby- Data Types- Symbols

Symbols

● Symbols are a lighter form of strings.

● They are preceded by a colon (:), and used instead of

strings because they take up less memory space and have

a better performance.

RUBY –

Operation on Scalar

Data Type

Ruby- Operations/Methods on Numbers

Method Use Example

.even? to check whether or not an integer is even.

Returns a true or false boolean.

15.even? #=>

false 4.even?

#=> true

.odd? to check whether or not an integer is odd. Returns

a true or false boolean.

15.odd? #=> true

.ceil rounds floats up to the nearest integer number 6.7.ceil #=> 7

8.3.ceil #=> 9

.floor rounds floats down to the nearest integer number 8.3.floor #=> 8

6.7.floor #=> 6

.pred return the previous consecutive integer 15.pred #=> 14

.to_s returns a string of that number. 15.to_s #=> "15"

Ruby- Operations/Methods on String

Method Use Example

str.chars Convert a String to a character array char_array = "abcdeABCDE".chars

str.size

str.length

Get the length of a String "HELLO

World".length

"HELLO World".size

str.reverse Reverse a String str = "Anna"

str.reverse

str.include? Search for one or more characters of a String "Hello world".include?("w")

str.downcase will convert each character of a string into lowercase "HELLO

World".downcase #

"hello world"

str.upcase will convert each character of a string into uppercase. "hello worlD".upcase

"HELLO WORLD"

RUBY Simple Input

and Output

Simple Input and Output

Screen

Output

● puts method is used to display the output on the

screen

● Operands for the puts method is String

● To display variable value use #{....}

● Example:

○ Rno=1

○ Puts “My Roll No is #{Rno}”

Simple Input and Output

Screen

Input

● gets method is used to take input from keyboard

● This method reads line of input

● gets.to_i to take integer value & gets.to_f for float value

● Example:

○ puts “Enter your age”

○ age=gets.to_i

RUBY –

Control Statements

Ruby if...else Statement

Syntax

if conditional [then]

code...

[elsif conditional [then]

code...]...

[else

code...]

end

Example

x = 1

if x > 2

puts "x is greater than 2"

elsif x <= 2 and x!=0

puts "x is 1"

else

puts "I can't guess the number"

end

Ruby unless Statement

unless conditional

[then] code

[else

code

] end

x = 1

unless x>=2

puts "x is less than 2"

else

puts "x is greater than 2"

end

Syntax Example

Executes code if conditional is false. If the conditional is true, code specified in the else

clause is executed.

Ruby case Statement

case expression

[when expression [, expression ...] [then]

code]... [else

code] end

$age = 5

case $age

when 0 .. 2

when 3 .. 6

when 7 .. 12

puts "baby"

puts "little child"

puts "child"

when 13 .. 18 puts "youth"

else puts "adult"

end

Syntax Example

RUBY –

Array

Ruby- Arrays

● Ruby arrays are ordered, integer-indexed collections of any object. Each

element in an array is associated with and referred to by an index.

● an index of -1 indicates the last element of the array, -2 is the next to last

element in the array, and so on.

● Ruby arrays can hold objects such as String, Integer, Fixnum, Hash,

Symbol, even other Array objects.

Ruby- Creating Arrays

Method 1

Method 2

cars = Array.new

cars = Array.new (20)
You can set the size

of an array at the

time of creating

array

CARS= Array.new(3, "Oddi") Method 3

Creating array

using new

method

This will Produce

O/P ["Oddi",

"Oddi", "Oddi]

Ruby- Array Built-in Methods

Method Example Use of Method

.length array.length The .length method tallies the number of elements in your array and

returns the count:

.first array.first The .first method accesses the first element of the array, the element at

index 0:

.last array.last The .last method accesses the last element of the array:

.take array.take(3) The .take method returns the first n elements of the array:

.drop array.drop(3) The .drop method returns the elements after n elements of the array:

.pop array.pop The .pop method will permanently remove the last element of an array

.push array.push(98) The .push method will allow you to add an element to the end of an array

RUBY –

Hashes

Ruby- Hashes

● A Hash is a collection of key-value pairs like this: "employee" =

> "salary". It is similar to an Array, except that indexing is done

via arbitrary keys of any object type, not an integer index.

● If you attempt to access a hash with a key that does not exist, the

method will return nil.

Ruby- Creating Hashes

Method 1

Method 2

months = Hash.new

months = Hash.new("month")
hash with a default

value

H = Hash["a" => 100,"b" => 200] Method 3

Creating Hash using new

method

puts "#{H['a']}"

This will produce o/p−

100

Ruby- Hashes Vs Array

Hashes Arrays

whereas hashes support any object as a

key

With arrays, the key is an integer

Elements in Hash are not ordered Elements in Array are in ordered

Example: months = Hash.new Example: cars = Array.new

RUBY –

Methods, Classes,

Code Block &

Iteration

Methods

● Ruby methods prevent us from writing the same code in a program

again and again.

● It is a set of expression that returns a value.

● Defining Method

○ Ruby method is defined with the def keyword followed by method

name.

○ At the end use end keyword.

○ Methods name should always start with a lowercase letter

Methods

Syntax:

def

methodName

code...

end

Example

:

def welcome

puts “Welcome

dear Students”

end

Methods

Local variables

The Local variables either are formal parameters or are variables created in a

method. A variable is created in a method by assigning an object to it. The scope of

a local variable is from the header of the method to the end of the method.

Parameters

The parameter values that appear in a call to a method are called actual parameters.

The parameter names used in the method, which correspond to the actual parameters,

are called formal

parameters

Classes

● Each Ruby class is an instance of class Class. Classes in Ruby are first-class objects.

● Ruby class always starts with the keyword class followed by the class name. Conventionally, for

class name we use CamelCase. The class name should always start with a capital letter. Defining

class is finished with end keyword

Syntax:

class

ClassName

codes...

end

Example

Class Vehicle {

Number no_of_wheels

String Name

Function speeding {

 }

Function driving {

}

}

Classes

● Inheritance

○ Subclasses are defined in Ruby with the left angle bracket

(<):

○ class My_Subclass < Base_class

● Ruby modules provide a naming encapsulation that is often

used to define libraries of methods

Code Blocks

● Ruby code blocks are called closures in other programming languages. It consist of a group of
codes which is always enclosed with braces or written between do..end.

● A block is written in two

ways, 1.Multi-line between
do .. end

Example:

do

club.enroll(person

) person.socialize

end

2.Inline between braces { }

Example: { puts

"Hello" }

Iterators- Examples

Each iterator

Example:

(0..9) . each do | i |

puts i

end

Times iterator

Example:

7.times do |i|

puts

i end

Each iterator

Example O/P:

0 1 2 …….9

Times iterator

Example O/P:

0 1 2 …….6

Upto iterator

Example:

7.upto(4) do |i|

puts i

end

Upto iterator

Example O/P:

4 5 6 7

downto iterator

Example:

7.downto(4) do |i|

puts i

end

downto iterator

Example O/P:

7 6 5 4

Iterators

● The word iterate means doing one thing multiple times.

● “Iterators” is the object-oriented concept in Ruby.

● Iterators are the methods which are supported by collections(Arrays, Hashes etc.).

● There are many iterators in Ruby as follows:

1. Each Iterator

2. Collect Iterator

3. Times Iterator

4. Upto Iterator

5. Downto Iterator

6. Step Iterator

7. Each_Line Iterator

RUBY –

Pattern Matching

Ruby- Pattern Matching

● Pattern matching is a feature that is commonly found in functional programming languages.

● A regular expression is a sequence of characters that define a search pattern, mainly for use

in pattern matching with strings.

● ~ / / This is used for Pattern matching or else can use .match() method

● Example:-

line1 = "Cats are smarter than dogs";

if (line1 = ~ / Cats(. *) /)

puts "Line 1 contains Cats"

end

Pattern Matching- Regular Expression

● \w is equivalent to [0-9a-zA-Z_]

● \d is the same as [0-9]

● \s matches white space

● \W anything that’s not in [0-9a-zA-

Z_]

● \D anything that’s not a number

● \S anything that’s not a space

● + is for 1 or more characters

● * is for 0 or more characters

● ? is for 0 or 1 character

● i is for ignores case when matching

text.

● m is for matches multiple lines

● ^ Beginning of Line

● $ End of Line

short expressions for specifying character

ranges

Modifiers

Pattern Matching- Example

Remembering Matches The part of the string that matched a part of the pattern can be saved in

an implicit variable for later use. The part of the pattern whose match you want to save is placed

in parentheses. The substring that matched the first parenthesized part of the pattern is

saved in $1, the second in $2, and so forth.

Rails

Overview

of Rails

Overview of Rail

● Ruby on Rails is a server-side web application development framework .

● Written in Ruby by David Heinemeier Hansson.

● It is based on MVC pattern.

● You could develop a web application at least ten times faster with Rails than

you could with a typical Java framework.

● An open source Ruby framework for developing database-backed web

applications.

● Configure your code with Database Schema.

● No compilation phase required.

Overview of Rail

Why Ruby on Rails?

1. Easy to learn

2. Open source (very liberal license)

3. Rich libraries

4. Very easy to extend

5. Truly object-oriented

6. Less coding with fewer bugs

7. Helpful communication

Overview of Rail

https://oseven.in/files/58ce5021925bd.pdf

Overview of Rail

Where to use Ruby on Rails?

You can use Ruby on Rails application in various area of web

development like in a

○ long term project which needs large transformation,

○ in the project that has heavy traffic,

○ to develop a short prototype,

○ in a project that requires wide range of complex functions, etc.

Overview of Rail

Advantages of Ruby on Rails

1. Tooling: Rails provides tooling that helps us to deliver more features in less time.

2. Libraries: There’s a 3rd party module(gem) for just about anything we can think

of.

3. Code Quality: Ruby code quality significantly higher than PHP or NodeJS

equivalents.

4. Test Automation: The Ruby community is big into and test automation and

testing.

5. Large Community: Ruby is large in the community.

6. Productivity: Ruby is incredibly fast from another language. Its productivity is

high.

Overview of Rail

Disadvantages of Ruby on Rails
1. Runtime Speed: The run time speed of Ruby on Rails is slow as

compare to Node.Js

2. Lack of Flexibility

3. Boot Speed

4. Documentation

5. Multithreading: Ruby on Rails supports multithreading, but some IO

libraries do not support multithreading

Rails

Application

and Database

Rails Applications and Databases

● Rails uses an object-relational mapping (ORM) approach to relate the parts of a

relational database to object-oriented constructs.

● Each relational database table is implicitly mapped to a class.

● For example, if the database has a table named employees, the Rails application

program that uses employees will have a class named Employee.

● Rows of the employees table will have corresponding objects of the Employee class,

which will have methods to get and set the various state variables, which are Ruby

attributes of objects of the class.

Rails Applications and Databases

● In sum, an ORM maps

○ tables to classes,

○ rows to objects, and

○ columns to the fields of the objects.

● Furthermore, the Employee class will have methods for performing table-level operations,

such as finding an object with a certain attribute value.

● The key aspect of the ORM in Rails is that it is implicit: The classes, objects, methods, and

attributes that represent a database in Ruby are automatically built by Rails

Rails Applications and Databases- Example

For this example, we create a new application named cars in the examples

directory with the following command:

>rails -d mysql cars

The d flag followed by mysql appears in the rails command in order to tell

Rails that this application will use a MySQL database.

Rails

Document

Request

Document Request

https://oseven.in/files/58ce5021925bd.pdf

Document Request

Document

Type

Static

Dynamic

Document Request - Static

Static Documents: Hello, World in Rails:

● This section describes how to build a Hello, World application in Rails.

● The purpose of such an exercise is to demonstrate the directory structure of

the simplest possible Rails application,

● showing what files must be created and where they must reside in the

directory structure.

Document Request - Static

1. Create a new subdirectory.

Example- We created a subdirectory named examples for the example

applications.

2. Next, move to the examples directory and create a new Rails application named

greet with the following command:

> rails greet

3. Rails responds by creating more than 45 files in more than 30 directories.

Most interesting of which at this point is app. The app directory has four

subdirectories

Document Request - Static

The app directory has four subdirectories:

1. models,

2. views,

3. controllers

4. helpers.

● The helpers subdirectory contains Rails-provided methods that aid in constructing

applications.

● Most of the user code to support an application will reside in models, views, or

controllers

● One of the directories created by the rails command is script, which has several

important Ruby scripts that perform services.

Directory Structure Created

Source:

https://oseven.in/files/58ce5021925bd.pdf

Document Request - Static

● The class SayController inherits from ApplicationController, which

is in the file application.rb.

● The class ApplicationController is a subclass of ActionController, which

defines the basic functionality of a controller.

● Note that SayController produces the response to requests, so a method must

be added to it.

Document Request - Static

● Next, build the response document, or view file, which will be a simple XHTML file to

produce the greeting.

● The following is the template for the greet application:

<html>

<body>

<h1> Welcome, to Rail </h1>

</body>

</html>

● The extension on this file’s name is .html.erb because the file stores an HTML document,

but it may include embedded Ruby code

How Rails reacts to a request for a static

document

1. First, the name of the controller is extracted from the URL.

2. Next, an instance of the controller class —in our example, SayController—is created.

3. The name of the action is then extracted from the URL—in our example, hello.

4. Then Rails searches for a template with the same name as the action method in the

subdirectory with the same name as the controller in the app/views directory.

5. Next, the template file is given to ERb to interpret any Ruby code that is embedded in

the template.

6. Finally, the template file is returned to the requesting browser, which displays it.

how Rails reacts to a request for a static

document

Document Request - Dynamic document

● Dynamic documents can be constructed in Rails by embedding Ruby code in

a template file.

● As an example of a dynamic document, to display the current date and time

on the server

● Ruby code is embedded in a template file by placing it between the <% and

%> markers.

Document Request - Dynamic document

● The date can be obtained by calling Ruby’s Time.now method,

● Which returns the current day of the week, month, day of the month, time,

time zone, and year, as a string.

● So, we can put the date in the response template with

● <p> It is now <%= Time.now %> </p>

Rails Layout

Rails Layouts

● In Rails, layouts are pieces that fit together (for example header, footer, menus, etc) to make a

complete view.

● An application may have as many layouts as you want.

● Rails automatically pair up layouts with respective controllers having same name.

● Rails layouts basically work on Don't Repeat Yourself principle (DRY).

● In Rails, layouts are enabled by default.

● Whenever you generate a new Rails application, a layout is automatically generated for you in

app/views/layouts.

● First we need to define a layout template and then define the path for controller to know that

layout exists.

Rails Layouts

Creating Responses

There are three ways to create an HTTP response from the controller's point of

view:

1. Call render to create a full response to send back to the browser

2. Call redirect_to to send an HTTP redirect status code to the browser

3. Call head to create a response to end back to the browser

Rails Layouts

● Importance of yield statement

● The yield statement in Rails decides where to render the content for the

action in layout.

● If there is no yield statement in the layout, the layout file itself will be

rendered but additional content into the action templates will not be

correctly placed within the layout.

● Hence, a yield statement is necessary to add in a layout file.

● <%= yield %>

Rails Layouts

Finding correct layout

● Rails searches for the layout with same name in the app/layouts directory as the

controllers name.

● For example, if you have a controller called abController, then rails

will search for layouts/ab.html.erb layout.

● If no layout with the same name is present, then it will use the default layout

Rails Layouts

Relation between Rails Layouts and Templates

When a request is made in an application, following process occur:

1. Rails find a template for corresponding action to render method in your

controllers action.

2. Then finds correct layout to use.

3. It uses action template to generate a content specific to the action.

4. Finally it looks for the layout's yield statement and insert action's template

here

Rails with Ajax

Rails with Ajax

Ajax stands for Asynchronous JavaScript and XML.

Ajax is not a single technology; it is a suite of several technologies as following −

● XHTML for the markup of web pages

● CSS for the styling

● Dynamic display and interaction using the DOM

● Data manipulation and interchange using XML

● Data retrieval using XMLHttpRequest

● JavaScript as the glue that meshes all this together

Rails with Ajax

● Ajax enables you to retrieve data for a web page without having to

refresh the contents of the entire page.

● In the basic web architecture, the user clicks a link or submits a

form.

● The form is submitted to the server, which then sends back a

response.

● The response is then displayed for the user on a new page.

Rails with Ajax

How Rails Implements Ajax

Once the browser has rendered and displayed the initial web page, different

user actions cause it to display a new web page or trigger an Ajax operation

−

1. Some trigger fires

2. The web client calls the server

3. The server does processing

4. The client receives the response

Rails with Ajax

AJAX Example:

In this example, we will provide, list, show and create operations on ponies table.

1. Creating An Application using command:- rails new ponies

2. Call the app directory using with cd command.

3. Migrate the database as follows command: rake db:migrate

4. Now Run the Rails application as follows command: rails s

5. Now open the web browser and call a url as http://localhost:3000/ponies/new

6. Creating an Ajax-Now open app/views/ponies/index.html.erb with suitable text editors.

Update your destroy line with :remote => true, :class => 'delete_pony'

Rails with Ajax- Output After running Ajax

in Web Browser

Rails with Ajax- Output After running Ajax

in Web Browser

EJB-

Enterprise

JavaBeans

Outline of EJB

EJB: Overview

types of EJB,

Architecture

EJB: Overview

● EJB stands for Enterprise Java Beans.

● EJB is an essential part of a J2EE platform.

● EJB provides an architecture to develop and deploy component based enterprise

applications considering robustness, high scalability, and high performance.

● When use Enterprise Java Bean?

○ Application needs Remote Access. In other words, it is distributed.

○ Application needs to be scalable. EJB applications supports load balancing, clustering and fail-

over.

○ Application needs encapsulated business logic. EJB application is separated from presentation

and persistent layer.

EJB: Overview
● EJB is an acronym for Enterprise Java Bean. It is a specification provided by Sun

Microsystems to develop secured, robust and scalable distributed applications.

● To run EJB application, you need an application server (EJB Container) such as Jboss,

Glassfish, Weblogic, Websphere etc. It performs: (Function of EJB)

1. Life cycle management

2. Security

3. Transaction management

4. Object pooling

● EJB application is deployed on the server, so it is called server side component also.

● EJB is like COM (Component Object Model) provided by Microsoft. But, it is different from Java Bean,

RMI and Web Services.

TYPES OF EJB

There are 3 types of enterprise bean in java.

1. Session Bean

Session bean contains business logic that can be invoked by local, remote or webservice client.

2. Message Driven Bean

Like Session Bean, it contains the business logic but it is invoked by passing message.

3. Entity Bean

It encapsulates the state that can be persisted in the database. It is deprecated. Now, it is replaced with JPA (Java

Persistent API).

Advantages of EJB

Advantages of EJB :

1. EJB is an API, hence the application’s build on EJB can run on Java EE web application

server.

2. The EJB developer focuses on solving business problems and business logic.

3. Java beans are portable components that help the JAVA application assembler to

formulate new applications for the already existing JavaBeans.

4. EJB container helps in providing system-level services to enterprise Java beans.

5. EJB contains business logic hence the front end developer can focus on the presentation

of the client interface.

6. It provides simplified development of large scale enterprise level application.

EJB: Overview

Disadvantages of EJB

• Requires application server

• Requires only java client. For other language client, you need to go for web

service.

• Complex to understand and develop ejb applications.

• It takes time for development.

Outline of EJB

EJB: Overview

types of EJB,

Architecture

Types of EJB

Types of EJB

S.

No
Type & Description

1

Session Bean

Session bean stores data of a particular user for a

single session. It can be stateful or stateless.

It is less resource intensive as compared to entity bean.

Session bean gets destroyed as soon as user session terminates.

2

Entity Bean

Entity beans represent persistent data storage.

User data can be saved to database via entity beans and later on can be retrieved from the database in

the entity bean.

3

Message Driven Bean

Message driven beans are used in context of JMS (Java Messaging Service).

Message Driven Beans can consumes JMS messages from external entities and act accordingly.

● Stateless Session bean is a business object that represents business logic only. It doesn't

have state (data).

● In other words, conversational state between multiple method calls is not maintained by the

container in case of stateless session bean.

● The stateless bean objects are pooled by the EJB container to service the request on demand.

● It can be accessed by one client at a time. In case of concurrent access, EJB container

routes each request to different instance.

● Annotations used in Stateless Session Bean

● @Stateless

Session beans

Session beans

● Stateful Session Bean

● Stateful Session bean is a business object that represents business logic like stateless

session bean. But, it maintains state (data).

● In other words, conversational state between multiple method calls is maintained by

the container in stateful session bean.

● Annotations used in Stateful Session Bean

● @Stateful

Message Driven Bean

● Message Driven Bean

● A message driven bean (MDB) is a bean that contains business logic. But, it is invoked by passing the

message. So, it is like JMS Receiver.

● MDB asynchronously receives the message and processes it.

● A message driven bean receives message from queue.

● A message driven bean is like stateless session bean that encapsulates the business logic and doesn't

maintain state.

Entity beans

● Container-managed persistence—

○ The EJB container manages data by saving it to a designated resource, which is

normally a database.

○ For this to occur, you must define the data that the container is to manage within

the deployment descriptors.

○ The container manages the data by saving it to the database.

● Bean-managed persistence—

○ The bean implementation manages the data within callback methods.

○ All the logic for storing data to your persistent storage must be included in the

ejbStore method and reloaded from your storage in the ejbLoad method.

○ The container invokes these methods when necessary.

Outline of EJB

EJB: Overview

types of EJB,

Architecture

EJB Architecture

EJB Architecture

Enterprise

Java Beans

Enterprise

Java Beans

EJB Client Relational

Database

EJB Server

EJB

Container

EJB Architecture- Components

● EJB server(s)

● EJB container(s)

● Enterprise Beans

● EJB clients

● other auxillary systems (e.g. Java Naming and Directory Interface (JNDI) server,

Java Transaction Service (JTS), ...).

EJB Architecture- Components

1. Application Server

This server is the outermost layer in the architecture and it holds the container.

It provides the necessary environment to execute the applications developed

using the beans. Web-logic, Web-sphere, JBoss, Tomcat, Wildfly, and Glass-

finish are some of the application servers popular in the market.

The main functionality of Application servers is

a. Manage Interfaces,

b. Execution of the processes,

c. Connecting to the database,

d. Manage other resources.

EJB Architecture- Components

2. Container

Container is the second outermost layer in EJB structure and it provides the

following supporting services to the enterprise beans housed in it.

• Transactional service like Registering the objects, assign remote interface,

purge the instances

• Monitoring the activities of the objects and coordinating distributed

components

• Security service and Pooling of resources

• Manages Life-cycle of beans and its concurrency

• Provide a platform for the developer to concentrate on business logic

EJB Architecture- Components

3. Beans

Enterprise java bean installed in the container is something like Plain old java

object (POJO) and they are registered to the container. Beans provide business

logic for developing robust, secured and large scale business applications.

○ Interacts with EJB container

○ EJB Client is a local program which can call & operate remote

beans.

○ Client locates an Enterprise Java Beans through JNDI(Java Naming

Directory Services)

Java beans Vs Enterprise Java beans

Sr. No Java Beans Enterprise Java beans

1 Visible Not visible, Runs as remote

2
Local, Single process and runs in the Client machine

Server-side beans are possible not preferred
Executed in the server-side

3
Applets and applications are built using generic

components created by Java Beans.

It uses component technology but it is not built or

extended over Beans.

4
It has an external interface to interpret bean’s

functionality
Works seamlessly with IDE or external builder tool.

5
Have Property editors, Customizers and Beaninfo

classes

No such concepts other than what is provided by

deployment descriptor.

6 No types, No support for transactions Have three types and transactions are supported

References
• https://www.javatpoint.com/what-is-ruby

• https://www.tutorialspoint.com/ruby/ruby_overview.htm#:~:text=Ruby%20is%20a%20server%2Dside,le
arn%20very%20quickly%20and%20easily.

• https://www.javatpoint.com/ruby-data-types

• https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/

• https://www.javatpoint.com/ruby-blocks

• https://www.geeksforgeeks.org/ruby-types-of-iterators/

• https://www.tutorialspoint.com/ruby-on-rails/rails-introduction.htm

• https://www.geeksforgeeks.org/ruby-on-rails-introduction/

• https://www.javatpoint.com/ruby-on-rails-
layout#:~:text=In%20Rails%2C%20layouts%20are%20pieces,respective%20controllers%20having%20sam
e%20name.

• https://www.javatpoint.com/what-is-ejb

• https://www.edureka.co/blog/ejb-in-java/

https://www.javatpoint.com/what-is-ruby
https://www.javatpoint.com/what-is-ruby
https://www.javatpoint.com/what-is-ruby
https://www.javatpoint.com/what-is-ruby
https://www.javatpoint.com/what-is-ruby
https://www.tutorialspoint.com/ruby/ruby_overview.htm
https://www.tutorialspoint.com/ruby/ruby_overview.htm
https://www.javatpoint.com/ruby-data-types
https://www.javatpoint.com/ruby-data-types
https://www.javatpoint.com/ruby-data-types
https://www.javatpoint.com/ruby-data-types
https://www.javatpoint.com/ruby-data-types
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.geeksforgeeks.org/ruby-decision-making-if-if-else-if-else-if-ternary-set-1/
https://www.javatpoint.com/ruby-blocks
https://www.javatpoint.com/ruby-blocks
https://www.javatpoint.com/ruby-blocks
https://www.geeksforgeeks.org/ruby-types-of-iterators/
https://www.geeksforgeeks.org/ruby-types-of-iterators/
https://www.geeksforgeeks.org/ruby-types-of-iterators/
https://www.geeksforgeeks.org/ruby-types-of-iterators/
https://www.geeksforgeeks.org/ruby-types-of-iterators/
https://www.geeksforgeeks.org/ruby-types-of-iterators/
https://www.geeksforgeeks.org/ruby-types-of-iterators/
https://www.tutorialspoint.com/ruby-on-rails/rails-introduction.htm
https://www.tutorialspoint.com/ruby-on-rails/rails-introduction.htm
https://www.tutorialspoint.com/ruby-on-rails/rails-introduction.htm
https://www.tutorialspoint.com/ruby-on-rails/rails-introduction.htm
https://www.tutorialspoint.com/ruby-on-rails/rails-introduction.htm
https://www.tutorialspoint.com/ruby-on-rails/rails-introduction.htm
https://www.tutorialspoint.com/ruby-on-rails/rails-introduction.htm
https://www.geeksforgeeks.org/ruby-on-rails-introduction/
https://www.geeksforgeeks.org/ruby-on-rails-introduction/
https://www.geeksforgeeks.org/ruby-on-rails-introduction/
https://www.geeksforgeeks.org/ruby-on-rails-introduction/
https://www.geeksforgeeks.org/ruby-on-rails-introduction/
https://www.geeksforgeeks.org/ruby-on-rails-introduction/
https://www.geeksforgeeks.org/ruby-on-rails-introduction/
https://www.javatpoint.com/ruby-on-rails-layout
https://www.javatpoint.com/ruby-on-rails-layout
https://www.javatpoint.com/ruby-on-rails-layout
https://www.javatpoint.com/ruby-on-rails-layout
https://www.javatpoint.com/ruby-on-rails-layout
https://www.javatpoint.com/ruby-on-rails-layout
https://www.javatpoint.com/ruby-on-rails-layout
https://www.javatpoint.com/ruby-on-rails-layout
https://www.javatpoint.com/what-is-ejb
https://www.javatpoint.com/what-is-ejb
https://www.javatpoint.com/what-is-ejb
https://www.javatpoint.com/what-is-ejb
https://www.javatpoint.com/what-is-ejb
https://www.javatpoint.com/what-is-ejb
https://www.edureka.co/blog/ejb-in-java/
https://www.edureka.co/blog/ejb-in-java/
https://www.edureka.co/blog/ejb-in-java/
https://www.edureka.co/blog/ejb-in-java/
https://www.edureka.co/blog/ejb-in-java/

Thank You

109

gharu.anand@gmail.com

Blog : anandgharu.wordpress.com

Prof. Gharu Anand N. 109

mailto:Gharu.anand@gmail.com

