- SSYNTAX ANALYSIS CFC

PREPARED BY:

PROF. ANAND N. GHARU

ASSISTANT PROFESSOR

COMPUTER DEPARTMENT

SUBJECT - COMPILER (BE COMPUTER SPPU-20

Syntax Analysis

IV in the Compiler Model

Position of a Parser

The Role Of Parser

- A parser implements a C-F grammar
- The role of the parser is two fold:

1. To check syntax (= string recognizer)

- And to report syntax errors accurately

2. To invoke semantic actions

- For static semantics checking, e.g. type checking of expressions, functions, etc.
- For syntax-directed translation of the source code to an intermediate representation

Syntax-Directed Translation

- One of the major roles of the parser is to produce an intermediate representation (IR) of the source program using syntax-directed translation methods
- Possible IR output:
- Abstract syntax trees (ASTs)
- Control-flow graphs (CFGs) with triples, three-address code, or register transfer list notation
- WHIRL (SGI Pro64 compiler) has 5 IR levels!

Error Handling

- A good compiler should assist in identifying and locating errors
- Lexical errors: important, compiler can easily recover and continue
- Syntax errors: most important for compiler, can almost always recover
- Static semantic errors: important, can sometimes recover
- Dynamic semantic errors: hard or impossible to detect at compile time, runtime checks are required
- Logical errors: hard or impossible to detect

Viable-Prefix Property

- The viable-prefix property of LL/LR parsers allows early detection of syntax errors
- Goal: detection of an error as soon as possible without further consuming unnecessary input
- How: detect an error as soon as the prefix of the input does not match a prefix of any string in the language

Prefix $\left\{\begin{array}{l}\ldots \\ \text { for (i) } \begin{array}{c}\text { Error is } \\ \ldots\end{array} \quad \text { detected here }\end{array} \quad\right.$ Prefix $\left\{\begin{array}{c}\text { Error is } \\ \text { detected here } \downarrow \\ \text { DO } 10 \text { I }=1 ; 0 \\ \ldots\end{array}\right.$

Error Recovery Strategies

- Panic mode
- Discard input until a token in a set of designated synchronizing tokens is found
- Phrase-level recovery
- Perform local correction on the input to repair the error
- Error productions
- Augment grammar with productions for erroneous constructs
- Global correction
- Choose a minimal sequence of changes to obtain a global least-cost correction

Grammars (Recap)

- Context-free grammar is a 4-tuple $G=(N, T, P, S)$ where
$-T$ is a finite set of tokens (terminal symbols)
$-N$ is a finite set of nonterminals
$-P$ is a finite set of productions of the form $\alpha \rightarrow \beta$
where $\alpha \in(N \cup T)^{*} N(N \cup T)^{*}$ and $\beta \in(N \cup T)^{*}$
$-S \in N$ is a designated start symbol

Notational Conventions Used

- Terminals

$$
a, b, c, \ldots \in T
$$

specific terminals: 0, 1, id, +

- Nonterminals

$$
A, B, C, \ldots \in N
$$

specific nonterminals: expr, term, stmt

- Grammar symbols

$$
X, Y, Z \in(N \cup T)
$$

- Strings of terminals

$$
u, v, w, x, y, z \in T^{*}
$$

- Strings of grammar symbols
$\alpha, \beta, \gamma \in(N \cup T)^{*}$

Derivations (Recap)

- The one-step derivation is defined by

$$
\alpha A \beta \Rightarrow \alpha \gamma \beta
$$

where $A \rightarrow \gamma$ is a production in the grammar

- In addition, we define
$-\Rightarrow$ is leftmost $\Rightarrow{ }_{l m}$ if α does not contain a nonterminal
$-\Rightarrow$ is rightmost $\Rightarrow_{r m}$ if β does not contain a nonterminal
- Transitive closure $\Rightarrow{ }^{*}$ (zero or more steps)
- Positive closure \Rightarrow^{+}(one or more steps)
- The language generated by G is defined by

$$
L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{+} w\right\}
$$

Derivation (Example)

Chomsky Hierarchy:

Language
 rlaccifinntinn

- A grammar G is said to be
- Regular if it is right linear where each production is of the form

$$
A \rightarrow w B \quad \text { or } \quad A \rightarrow w
$$

or left linear where each production is of the form

$$
A \rightarrow B w \quad \text { or } \quad A \rightarrow w
$$

- Context free if each production is of the form
$A \rightarrow \alpha$
where $A \in N$ and $\alpha \in(N \cup T)^{*}$
- Context sensitive if each production is of the form $\alpha A \beta \rightarrow \alpha \gamma \beta$
where $A \in N, \alpha, \gamma, \beta \in(N \cup T)^{*},|\gamma|>0$
- Unrestricted

Chomsky Hierarchy

```
L}(\mathrm{ regular ) }\\textrm{L}(\mathrm{ context free) }\subset\textrm{L}(\mathrm{ context sensitive ) }\subset\textrm{L}(\mathrm{ unrestricted)
```

Where $L(T)=\{L(G) \mid G$ is of type $T\}$
That is: the set of all languages
generated by grammars G of type T

Examples:

Every finite language is regular! (construct a FSA for strings in $L(G)$)
$L_{1}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 1\right\}$ is context free
$L_{2}=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mathbf{c}^{n} \mid n \geq 1\right\}$ is contextsensitive

Parsin

g

Parser Top- BackTrack $\begin{aligned} & \text { Recursive } \\ & \text { Descent }\end{aligned}$ Down
 Non-
 BackTrack
 (Predictive/(Non -Recursive Descent/LL(1))

Bottom- Operator
 Precedence

SLR/LR(0)
Canonical LR or LR(1)
LALR

Down...Recursive Descent...BackTrack

- Recursive descent parsing is a top-down method of syntax analysis in which a set recursive procedures to process the input is executed.
- A procedure is associated with each nonterminal of a grammar.
- Top-down parsing can be viewed as an attempt to find a leftmost derivation for an input string.
- Equivalently, it attempts to construct a parse tree for the input starting from the root and creating the nodes of the parse tree in preorder.
- Recursive descent parsing involves backtracking.

Top-Down Parsing...Non-Recursive

- LL methods (Left-to-right, Leftmost derivation)

$$
\begin{aligned}
& \text { Grammar: } \\
& E \rightarrow T+T \\
& T \rightarrow(E) \\
& T \rightarrow-E \\
& T \rightarrow \text { id }
\end{aligned}
$$

Leftmost derivation:

$$
E \Rightarrow{ }_{I m} T+T
$$

$$
\Rightarrow_{I m} \mathbf{i d}+T
$$

$$
\Rightarrow_{I m} \mathrm{id}+\mathrm{id}
$$

Predictive Parsing...LL(1) Parser

- Eliminate left recursion from grammar
- Left factor the grammar
- Compute FIRST and FOLLOW
- Two variants:
- Recursive (recursive calls)
- Non-recursive (table-driven)

Left Recursion (Recap)

- Productions of the form

$$
\begin{aligned}
& A \rightarrow A \alpha \\
& \mid \beta \\
& \mid \gamma
\end{aligned}
$$

are left recursive

- When one of the productions in a grammar is left recursive then a predictive parser loops forever on certain inputs

General Left Recursion

Elimination Method

```
Arrange the nonterminals in some order }\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\ldots,\mp@subsup{A}{n}{
for i=1, ...,n do
    for j=1, ...,i-1 do
        replace each
        A}->\mp@subsup{A}{j}{}
        with
        A}\mp@subsup{A}{i}{}->\mp@subsup{\delta}{1}{}\gamma|\mp@subsup{\delta}{2}{}\gamma|\ldots|\mp@subsup{\delta}{k}{}
        where
        A
    enddo
    eliminate the immediate left recursion in A
enddo
```

Immediate Lett-Recursion

Elimination Method

Rewrite every left-recursive production

$$
\begin{aligned}
A \rightarrow & A \alpha \\
& \mid \beta \\
& \mid \gamma \\
& \mid A \delta
\end{aligned}
$$

into a right-recursive production:

$$
\begin{aligned}
& A \rightarrow \beta A_{R} \\
& \mid \gamma A_{R} \\
& A_{R} \rightarrow \alpha A_{R} \\
& \mid \delta A_{R} \\
& \quad \mid \varepsilon
\end{aligned}
$$

Example Left Recursion Elim.

$$
\left.\begin{array}{l}
A \rightarrow B C \mid \mathbf{a} \\
B \rightarrow C A \mid A \mathbf{b} \\
C \rightarrow A B|C C| \mathbf{a}
\end{array}\right\} \text { Choose arrangement: } A, B, C
$$

$$
\begin{aligned}
& i=1 \text { : } \\
& i=2, j=1 \text { : } \\
& \text { nothing to do } \\
& B \rightarrow C A \mid \underline{A} \mathbf{b} \\
& \Rightarrow \quad B \rightarrow C A \mid \underline{B C \mathbf{b} \mid \underline{\mathbf{a}} \mathbf{b}} \\
& \Rightarrow{ }_{(\mathrm{imm})} \quad B \rightarrow C A B_{R} \mid \mathbf{a} \mathbf{b} B_{R} \\
& B_{R} \rightarrow C b B_{R} \mid \varepsilon \\
& i=3, j=1 \text { : } \\
& i=3, j=2 \text { : } \\
& C \rightarrow \underline{A} B|C C| a \\
& \Rightarrow \quad C \rightarrow \underline{B C B|\underline{a} B| C C \mid a} \\
& C \rightarrow \underline{B} C B \mid \text { a } B|C C| a \\
& \Rightarrow \quad C \rightarrow C A B_{R} C B\left|\mathbf{a b} B_{R} C B\right| \mathbf{a} B|C C| \mathbf{a} \\
& \Rightarrow_{(\text {(imm })} \quad C \rightarrow \mathbf{a} \mathbf{b} B_{R} C B C_{R}\left|\mathbf{a} B C_{R}\right| a C_{R} \\
& C_{R} \rightarrow A B_{R} C B C_{R}\left|C C_{R}\right| \varepsilon
\end{aligned}
$$

Left Factoring

- When a nonterminal has two or more productions whose right-hand sides start with the same grammar symbols, the grammar is not $\mathrm{LL}(1)$ and cannot be used for predictive parsing
- Replace productions

$$
A \rightarrow \alpha \beta_{1} / \alpha \beta_{2} / \ldots\left|\alpha \beta_{n}\right| \gamma
$$

with

$$
\begin{aligned}
& A \rightarrow \alpha A_{R} \mid \gamma \\
& A_{R} \rightarrow \beta_{1} / \beta_{2} / \ldots / \beta_{n}
\end{aligned}
$$

FIRST (Revisited)

- $\operatorname{FIRST}(\alpha)=\{$ the set of terminals that begin all strings derived from α \}
$\operatorname{FIRST}(a)=\{a\}$
$\operatorname{FIRST}(\varepsilon)=\{\varepsilon\}$
$\operatorname{FIRST}(A)=\cup_{A \rightarrow \alpha} \operatorname{FIRST}(\alpha) \quad$ for $A \rightarrow \alpha \in P$ $\operatorname{FIRST}\left(X_{1} X_{2} \ldots X_{k}\right)=$
if for all $j=1, \ldots, i-1: \varepsilon \in \operatorname{FIRST}\left(X_{j}\right)$ then add non- ε in $\operatorname{FIRST}\left(X_{i}\right)$ to $\operatorname{FIRST}\left(X_{1} X_{2} \ldots X_{k}\right)$
if for all $j=1, \ldots, k: \varepsilon \in \operatorname{FIRST}\left(X_{j}\right)$ then add ε to $\operatorname{FIRST}\left(X_{1} X_{2} \ldots X_{k}\right)$

FOLLOW

- $\operatorname{FOLLOW}(A)=\{$ the set of terminals that can immediately follow nonterminal A \}
$\operatorname{FOLLOW}(A)=$
for all $(B \rightarrow \alpha A \beta) \in P$ do add FIRST $(\beta) \backslash\{\varepsilon\}$ to $\operatorname{FOLLOW}(A)$
for all $(B \rightarrow \alpha A \beta) \in P$ and $\varepsilon \in \operatorname{FIRST}(\beta)$ do add $\operatorname{FOLLOW}(B)$ to $\operatorname{FOLLOW}(A)$
for all $(B \rightarrow \alpha A) \in P$ do add $\operatorname{FOLLOW}(B)$ to $\operatorname{FOLLOW}(A)$
if A is the start symbol S then add $\$$ to $\operatorname{FOLLOW}(A)$

First $(\alpha=A \beta)=\{\operatorname{First}(A)$, if $\lambda \notin \operatorname{First}(A)$
First(A) $-\{\lambda\} \cup \operatorname{First}(\beta)$, if $\lambda \in \operatorname{First}(A)$

Red: A Blue : β

Step 1:

- First $(s \rightarrow a s e)=\operatorname{First}(a)=\{a\}$
- First $(s \rightarrow B \lambda)=\operatorname{First}^{(B)}$
- First $(B \rightarrow b$ be $)=\operatorname{First}(b)=\{b\}$
- First $(B \rightarrow C \lambda)=$ First(C)
- First $(c \rightarrow c \mathrm{ce})=\operatorname{First}(\mathrm{c})=\{c\}$
- First $(c \rightarrow d \lambda)=\operatorname{First}(d)=\{d\}$

First $(\alpha=A \beta)=-$ First (A), if $\lambda \notin$ First(A)

Red: A Blue: β

First(A) $-\{\lambda\} \cup$ First((β), if $\lambda \in \operatorname{First}(A)$

Step 1:

- First $(s \rightarrow a S e)=\{a\}$
- First $(s \rightarrow B \lambda)=\operatorname{First}^{(B)}$
- First $(B \rightarrow b B e)=\{b\}$
- First $(B \rightarrow C \lambda)=$ First(C)
- First $(c \rightarrow c C e)=\{c\}$
- First $(c \rightarrow d \lambda)=\{d\}$

Step	First Set						
	S	B	C	a	b	c	d
Step 1	\{a\}UFirst(B)	$\{b\}$ YFirst(c)	$\{c, d\}$				

Red:A Blue: β

First(A) $-\{\lambda\} \cup$ First((β), if $\lambda \in \operatorname{First}(A)$

Step 2:

- First $(s \rightarrow a s e)=\{a\}$
- First $(s \rightarrow B \lambda)=$ First $(B)=\{b\}$ UFirst(c)
- First $(B \rightarrow b B e)=\{b\}$
- First $(B \rightarrow C \lambda)=$ First(C)
- First $(\mathrm{c} \rightarrow \mathrm{cce})=\{\mathrm{c}\}$
- First $(c \rightarrow d \lambda)=\{d\}$

Step	First Set						
	S	B	C	a	b	c	d
Step 1	\{a\}UFirst(B)	$\{b\}$ YFirst(c)	$\{c, d\}$				

First $(\alpha=A \beta)=-$ First (A), if $\lambda \notin$ First(A)
First(A) $-\{\lambda\} \cup$ First (β), if $\lambda \in \operatorname{First}(A)$

Red:A Blue: β

Step 2:

- First $(\mathrm{s} \rightarrow \mathrm{aSe})=\{\mathrm{a}\}$
- First $(s \rightarrow B \lambda)=\{b\}$ UFirst (c)
- First $(B \rightarrow b B e)=\{b\}$
- First $(B \rightarrow C \lambda)=$ First(C)
- First $(\mathrm{c} \rightarrow \mathrm{cce})=\{\mathrm{c}\}$
- First $(c \rightarrow d \lambda)=\{d\}$

Step	First Set						
	S						B
C	a	b	c	d			
Step 1	$\{a\} \cup F i r s t(B)$	$\{b\} \cup F i r s t(c)$	$\{c, d\}$				
Step 2	$\{a\} \cup\{b\} \cup F i r s t(c)$						

First $(\alpha=A \beta)=-$ First (A), if $\lambda \notin$ First(A)
First(A) $-\{\lambda\} \cup$ First (β), if $\lambda \in \operatorname{First}(A)$

Red:A Blue: β

Step 2:

- First $(\mathrm{s} \rightarrow \mathrm{aSe})=\{\mathrm{a}\}$
- First $(s \rightarrow B \lambda)=\{b\}$ UFirst(c)
- First $(B \rightarrow b B e)=\{b\}$
- First $(B \rightarrow C \lambda)=\operatorname{First}(C)=\{c, d\}$
- First $(\mathrm{c} \rightarrow \mathrm{cce})=\{\mathrm{c}\}$
- First $(c \rightarrow d \lambda)=\{d\}$

Step	First Set						
	S						
B	C	a	b	c	d		
Step 1	\{a\}UFirst(B)	$\{b\}$ UFirst(c)	$\{c, d\}$				
Step 2	$\{a\} \cup\{b\}$ UFirst(c)						

First $(\alpha=A \beta)=-$ First (A), if $\lambda \notin$ First(A)
First(A) $-\{\lambda\} \cup$ First (β), if $\lambda \in \operatorname{First}(A)$

Red:A Blue: β

Step 2:

- First $(s \rightarrow a S e)=\{a\}$
- First $(s \rightarrow B \lambda)=\{b\}$ UFirst (c)
- First $(B \rightarrow b B e)=\{b\}$
- First $(B \rightarrow C \lambda)=\{c, d\}$
- First $\left(c \rightarrow c c_{e}\right)=\{c\}$
- First $(c \rightarrow d \lambda)=\{d\}$

Step	First Set						
	S						
B	C	a	b	c	d		
Step 1	\{a\}UFirst(B)	$\{b\}$ UFirst(c)	$\{c, d\}$				
Step 2	$\{a\} \cup\{b\}$ UFirst(c)						

Red: A Blue: β

First(A) $-\{\lambda\} \cup$ First(β), if $\lambda \in$ First(A)

Step 3:

- First $(\mathrm{s} \rightarrow \mathrm{aSe})=\{\mathrm{a}\}$
- First $(s \rightarrow B \lambda)=\{b\} \cup$ First $(c)=\{b\} \cup\{c, d\}$
- First $(B \rightarrow b B e)=\{b\}$
- First $(B \rightarrow C \lambda)=\{c, d\}$
- First $(c \rightarrow c c e)=\{c\}$
- First $(c \rightarrow d \lambda)=\{d\}$

Step	First Set						
	S						B
C	a	b	c	d			
Step 1	\{a\}UFirst(B)	$\{b\} \cup F i r s t(c)$	$\{c, d\}$				
Step 2	$\{a\} \cup\{b\} \cup F i r s t(c)$						

Red: A Blue: β

First(A) $-\{\lambda\} \cup$ First(β), if $\lambda \in$ First(A)

Step 3:

- First $(\mathrm{s} \rightarrow \mathrm{aSe})=\{\mathrm{a}\}$
- First $(s \rightarrow B \lambda)=\{b, c, d\}$
- First $(B \rightarrow b B e)=\{b\}$
- First $(B \rightarrow C \lambda)=\{c, d\}$
- First $(c \rightarrow c c e)=\{c\}$
- First $(c \rightarrow d \lambda)=\{d\}$

Step	Sirst Set						
	S	B	C	a	b	c	d
Step 1	$\{a\} \cup F i r s t(b)$	$\{b\} \cup F i r s t(c)$	$\{c, d\}$				
Step 2	$\{a\} \cup\{b\} \cup F i r s t(c)$	$\{b\} \cup\{c, d\}=\{b, c, d\}$	$\{c, d\}$				
Step 3	$\{a\} \cup\{b\} \cup\{c, d\}=\{a, b, c, d\}$	$\{b\} \cup\{c, d\}=\{b, c, d\}$	$\{c, d\}$				

First $(\alpha=A \beta)=-$ First (A), if $\lambda \notin$ First(A)

Red: A Blue: β

First $(A)-\{\lambda\} \cup \operatorname{First}(\beta)$, if $\lambda \in \operatorname{First}(A)$

Step 3:

- First $(s \rightarrow a s e)=\{a\}$
- First $(s \rightarrow B \lambda)=\{b, c, d\}$
- First $(B \rightarrow b B e)=\{b\}$
- First $(B \rightarrow C \lambda)=\{c, d\}$
- First $(\mathrm{c} \rightarrow \mathrm{cCe})=\{\mathrm{c}\}$
- First $(c \rightarrow d \lambda)$
$=\{d\}$
If no more change...
The first set of a terminal
symbol is itself

Step	First Set						
	S	B	c	a	b	c	d
Step 1	$\{a\} \cup F i r s t(B)$	$\{b\} \cup F i r s t(c)$	$\{c, d\}$				
Step 2	$\{a\} \cup\{b\} \cup F i r s t(c)$	$\{b\} \cup\{c, d\}=\{b, c, d\}$	$\{c, d\}$				
Step 3	$\{a\} \cup\{b\} \cup\{c, d\}=\{a, b, c, d\}$	$\{b\} \cup\{c, d\}=\{b, c, d\}$	$\{c, d\}$	$\{a\}$	$\{b\}$	$\{c\}$	$\{d\}$

Another Example....

First $(\alpha=A \beta)=\int \operatorname{First}(A)$, if $\lambda \notin \operatorname{First}(A)$
First(A) $-\{\lambda\} \cup$ First (β), if $\lambda \in \operatorname{First}(A)$

First $(\alpha=A \beta)=-$ First (A), if $\lambda \notin$ First(A) First(A) $-\{\lambda\} \cup$ First (β), if $\lambda \in \operatorname{First}(A)$

Red: A Blue: β

Step 1:

- First $(s \rightarrow A B C)=\operatorname{First}(A B C)$
- First $(A \rightarrow a \lambda)=$ First(a)
- First $(A \rightarrow \lambda \lambda)=$ First (λ) UFirst (λ)
- First $(B \rightarrow b \lambda)=$ First (b)
- First $(B \rightarrow \lambda \lambda)=\operatorname{First}(\lambda)$ UFirst (λ)

First $(\alpha=A \beta)=-$ First (A), if $\lambda \notin \operatorname{First}(A)$ First(A) $-\{\lambda\} \cup$ First (β), if $\lambda \in \operatorname{First}(A)$

$$
G_{0}\left\{\begin{array}{l}
\mathrm{S} \rightarrow \mathrm{ABC} \\
\mathrm{~A} \rightarrow \mathrm{a} \\
\mathrm{~A} \rightarrow \lambda \\
\mathrm{~B} \rightarrow \mathrm{~b} \\
\mathrm{~B} \rightarrow \lambda
\end{array}\right.
$$

Red: A Blue: β

Step 1:

- First $(s \rightarrow A B C)=\operatorname{First}(A B C)$
- First $(A \rightarrow a \lambda)=\{a\}$
- First $(A \rightarrow \lambda \lambda)=\{\lambda\}$
- First $(B \rightarrow b \lambda)=\{b\}$
- First $(B \rightarrow \lambda \lambda)=\{\lambda\}$

Step	First Set					
	S	A	B	a	b	c
Step 1	First(ABc)	$\{a, \lambda\}$	$\{b, \lambda\}$			

First $(\alpha=A \beta)=-\int$ First(A), if $\lambda \notin$ First(A)
First(A) $-\{\lambda\} \cup$ First (β), if $\lambda \in \operatorname{First}(A)$

Red: A Blue: β

Step 2:

- First $(s \rightarrow A B C)=\operatorname{First}(A B C)=\{a, \lambda\}$

$$
\begin{aligned}
& =\{\mathrm{a}, \lambda\}-\{\lambda\} \cup \text { First(Bc) } \\
& =\{\mathrm{a}\} \cup \text { First(Bc) }
\end{aligned}
$$

- First $(A \rightarrow a \lambda)=\{a\}$
- First $(A \rightarrow \lambda \lambda)=\{\lambda\}$
- First $(B \rightarrow b \lambda)=\{b\}$
- First $(B \rightarrow \lambda \lambda)=\{\lambda\}$

Step	First Set					
	S	A	B	a	b	c
Step 1	First(ABc)	$\{a, \lambda\}$	$\{b, \lambda\}$			
Step 2	$\{a\} \cup$ First(Bc)	$\{a, \lambda\}$	$\{b, \lambda\}$			

First $(\alpha=A \beta)=-\int$ First(A), if $\lambda \notin$ First(A)
First(A) $-\{\lambda\} \cup$ First (β), if $\lambda \in \operatorname{First}(A)$

Red: A Blue : β

Step 3:

- First $(s \rightarrow A B c)=\{a\} \cup$ First($B c)$
$=\{a\} \cup\{b, \lambda\}$
$=\{a\} \cup\{b, \lambda\}-\{\lambda\}$ UFirst(c)
$=\{a\} \cup\{b, c\}$
- First $(A \rightarrow a \lambda)=\{a\}$
- First $(A \rightarrow \lambda \lambda)=\{\lambda\}$
- First $(B \rightarrow b \lambda)=\{b\}$
- First $(B \rightarrow \lambda \lambda)=\{\lambda\}$

Step	First Set					
	S	A	B	a	b	c
Step 1	First(ABc)	$\{a, \lambda\}$	$\{b, \lambda\}$			
Step 2	$\{a\} \cup$ First(Bc)	$\{a, \lambda\}$	$\{b, \lambda\}$			
Step 3	$\{a\} \cup\{b, c\}=\{a, b, c\}$	$\{a, \lambda\}$	$\{b, \lambda\}$			

First $(\alpha=A \beta)=-$ First(A), if $\lambda \notin$ First(A)

Red: A Blue: β

First(A) $-\{\lambda\} \cup \operatorname{First}(\beta)$, if $\lambda \in \operatorname{First}(A)$

Step 3:

- First $(s \rightarrow A B c)=\{a, b, c\}$
- First $(A \rightarrow a \lambda)=\{a\}$
- First $(A \rightarrow \lambda \lambda)=\{\lambda\}$
- First $(B \rightarrow b \lambda)=\{b\}$
- First $(B \rightarrow \lambda \lambda)=\{\lambda\}$

If no more change... The first set of a terminal symbol is itself

Step	First Set						
	S	A	B	a	b	c	
Step 1	First(ABc)	$\{a, \lambda\}$	$\{b, \lambda\}$				
Step 2	$\{a\} \cup$ First(Bc)	$\{a, \lambda\}$	$\{b, \lambda\}$				
Step 3	$\{a\} \cup\{b, c\}=\{a, b, c\}$	$\{a, \lambda\}$	$\{b, \lambda\}$	$\{a\}$	$\{b\}$	$\{c\}$	

LL(1) Grammar

- A grammar G is $L L(1)$ if it is not left recursive and for each collection of productions

$$
A \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{n}
$$

for nonterminal A the following holds:

1. $\operatorname{FIRST}\left(\alpha_{i}\right) \cap \operatorname{FIRST}\left(\alpha_{j}\right)=\varnothing$ for all $i \neq j$
2. if $\alpha_{i} \Rightarrow^{*} \varepsilon$ then
2.a. $\quad \alpha_{j} \nRightarrow * \varepsilon$ for all $i \neq j$
2.b. $\operatorname{FIRST}\left(\alpha_{j}\right) \cap \operatorname{FOLLOW}(A)=\varnothing$ for all $i \neq j$

Non-LL(1) Examples

Grammar	Not LL(1) because:
$\mathrm{S} \rightarrow \mathrm{S}$ a $\mid \mathrm{a}$	Left recursive
$\mathrm{S} \rightarrow \mathrm{a} S \mid \mathrm{a}$	FIRST(a S$) \cap \operatorname{FIRST}(\mathrm{a}) \neq \varnothing$
$\mathrm{S} \rightarrow \mathrm{aR\mid} \mathrm{\varepsilon}$	
$\mathrm{R} \rightarrow \mathrm{S} \mid \varepsilon$	For $\mathrm{R}: \mathrm{S} \Rightarrow^{*} \varepsilon$ and $\varepsilon \Rightarrow^{*} \varepsilon$
$\mathrm{~S} \rightarrow \mathrm{aRa}$	For R:
$\mathrm{R} \rightarrow \mathrm{S} \mid \varepsilon$	FIRST(S) $\cap \operatorname{FOLLOW}(\mathrm{R}) \neq \varnothing$

Non-Recursive Predictive

Parsing: Table-Driven
 Darcina

- Given an LL(1) grammar $G=(N, T, P, S)$ construct a table $M[A, a]$ for $A \in N, a \in T$ and use a driver program with a stack

Constructing an LL(1)

Predictive Parsing Table

```
for each production A ->\alpha do
    for each a}\in\operatorname{FIRST}(\alpha)\mathrm{ do
        add A->\alpha to M[A,a]
    enddo
    if }\varepsilon\in\operatorname{FIRST}(\alpha)\mathrm{ then
        for each b}\in\operatorname{FOLLOW(A)do
        add A ->\alpha to M[A,b]
        enddo
    endif
enddo
Mark each undefined entry in M error
```


Example Table

$$
\begin{aligned}
& E \rightarrow T E_{R} \\
& E_{R} \rightarrow+T E_{R} \mid \varepsilon \\
& T \rightarrow F T_{R} \\
& T_{R} \rightarrow F T_{R} \mid \varepsilon \\
& F \rightarrow(E) \mid \text { id }
\end{aligned}
$$

$A \rightarrow \alpha$	FIRST (α)	$\operatorname{FOLLOW}(A)$
$E \rightarrow T E_{R}$	$($ id	$\$)$
$E_{R} \rightarrow+\mathrm{TE}_{R}$	+	$\$)$
$E_{R} \rightarrow \varepsilon$	ε	$\$)$
$T \rightarrow \mathrm{FT}_{\mathrm{R}}$	$($ id	$+\$)$
$\mathrm{T}_{\mathrm{R}} \rightarrow{ }^{*} \mathrm{FT}_{\mathrm{R}}$	$*$	$+\$)$
$\mathrm{T}_{\mathrm{R}} \rightarrow \varepsilon$	ε	$+\$$)
$\mathrm{F} \rightarrow(\mathrm{E})$	$($	$*+\$)$
$\mathrm{F} \rightarrow \mathrm{id}$	id	$*+\$)$

	id	+	$*$	$($	$)$	$\$$
E	$\mathrm{E} \rightarrow \mathrm{T} \mathrm{E}_{\mathrm{R}}$			$\mathrm{E} \rightarrow \mathrm{TE}_{\mathrm{R}}$		
E_{R}		$\mathrm{E}_{\mathrm{R}} \rightarrow+\mathrm{TE}_{\mathrm{R}}$			$\mathrm{E}_{\mathrm{R}} \rightarrow \varepsilon$	$\mathrm{E}_{\mathrm{R}} \rightarrow \varepsilon$
T	$\mathrm{T} \rightarrow \mathrm{FT}_{\mathrm{R}}$			$\mathrm{T} \rightarrow \mathrm{FT}_{\mathrm{R}}$		
T_{R}		$\mathrm{T}_{\mathrm{R}} \rightarrow \varepsilon$	$\mathrm{T}_{\mathrm{R}} \rightarrow * \mathrm{FT}_{\mathrm{R}}$		$\mathrm{T}_{\mathrm{R}} \rightarrow \varepsilon$	$\mathrm{T}_{\mathrm{R}} \rightarrow \varepsilon$
F	$\mathrm{F} \rightarrow \mathrm{id}$			$\mathrm{F} \rightarrow(\mathrm{E})$		46

LL(1) Grammars are Unambiguous

Ambiguous grammar
$S \rightarrow \mathbf{i} E \mathbf{t} S S_{R} \mid \mathbf{a}$
$S_{R} \rightarrow \mathbf{e} S \mid \varepsilon$
$E \rightarrow \mathbf{b}$

Error: duplicate table entry

$A \rightarrow \alpha$	$\operatorname{FIRST}(\alpha)$	$\operatorname{FOLLOW}(A)$
$\mathrm{S} \rightarrow \mathrm{i} \mathrm{EtSS}_{R}$	i	$\mathrm{e} \$$
$\mathrm{~S} \rightarrow \mathrm{a}$	a	$\mathrm{e} \$$
$\mathrm{~S}_{\mathrm{R}} \rightarrow \mathrm{eS}$	e	$\mathrm{e} \$$
$\mathrm{~S}_{\mathrm{R}} \rightarrow \varepsilon$	ε	e \$
$\mathrm{E} \rightarrow \mathrm{b}$	b	t

	a	b	e	i	t	\$
S	$\mathrm{S} \rightarrow \mathrm{a}$			$\mathrm{S} \rightarrow \mathrm{iEtSS}_{R}$		
$\mathrm{~S}_{\mathrm{R}}$			$\mathrm{S}_{R} \rightarrow \varepsilon$ $\mathrm{~S}_{\mathrm{R}} \rightarrow \mathrm{eS}$			$\mathrm{S}_{R} \rightarrow \varepsilon$
E			$\mathrm{E} \rightarrow \mathrm{b}$			

Predictive Parsing Program (Driver)

```
push($)
push(S)
a := lookahead
repeat
    X:= pop()
    if X is a terminal or }X=$\mathrm{ then
        match(X) // moves to next token and a := lookahead
```



```
        push}(\mp@subsup{Y}{k}{},\mp@subsup{Y}{k-1}{},\ldots,\mp@subsup{Y}{2}{},\mp@subsup{Y}{1}{})/// such that Y Y is on to
        ... invoke actions and/or produce IR output ...
    else error()
    endif
until X=$
```


Example Table-Driven Parsing

Stack	Input	Production applied
\$	id+id*id\$	$E \rightarrow T E_{R}$
\$ $E_{R} \underline{I}$	id+id*id\$	$T \rightarrow F T_{R}$
\$ $E_{R} T_{R} \underline{F}$	id+id*id\$	$F \rightarrow$ id
\$ $E_{R} T_{R}$ id	id+id*id\$	
$\$ E_{R} \underline{I}_{R}$	+id*id\$	$T_{R} \rightarrow \varepsilon$
\$ \underline{E}_{R}	+id*id\$	$E_{R} \rightarrow+T E_{R}$
\$ $E_{R} T \pm$	\pm +id*id\$	
\$ $E_{R} \underline{I}$	id*id\$	$T \rightarrow F T_{R}$
\$ $E_{R} T_{R} \underline{F}$	id*id\$	$F \rightarrow$ id
\$ $E_{R} T_{R}$ id	id*id\$	
\$ $E_{R} \underline{I}_{R}$	*id\$	$T_{R} \rightarrow * F T_{R}$
\$ $E_{R} T_{R} F_{-}^{*}$	*id\$	
\$ $E_{R} T_{R} \underline{E}$	id\$	$F \rightarrow$ id
\$ $E_{R} T_{R}$ id	id\$	
\$ $E_{R} \underline{I}_{R}$	\$	$T_{R} \rightarrow \varepsilon$
\$ \underline{E}_{R}	\$	$E_{R} \rightarrow \varepsilon$
\$	\$	

Panic Mode Recovery

Add synchronizing actions to undefined entries based on FOLLOW

Pro: Can be automated
Cons: Error messages are needed

FOLLOW $(E)=\{)$ \$ $\}$
$\left.\operatorname{FOLLOW}\left(E_{R}\right)=\{) \$\right\}$
FOLLOW $(T)=\{+\mid \$\}$
$\left.\operatorname{FOLLOW}\left(T_{R}\right)=\{+) \$\right\}$
$\operatorname{FOLLOW}(F)=\{+*) \$\}$

synch: the driver pops current nonterminal A and skips input till synch token or skips input until one of $\operatorname{FIRST}(A)$ is found

Phrase-Level

Recovery

Change input stream by inserting missing tokens For example: id id is changed into id * id

Pro:	Can be automated
Cons:	Recovery not always intuitive

insert *: driver inserts missing * and retries the production

Error Productions

$E \rightarrow T E_{R}$
$E_{R} \rightarrow+T E_{R} \mid \varepsilon$
$T \rightarrow F T_{R}$
$T_{R} \rightarrow^{*} F T_{R} \mid \varepsilon$
$F \rightarrow(E) \mid$ id

$$
\begin{aligned}
& \text { Add "error production": } \\
& \qquad T_{R} \rightarrow F T_{R}
\end{aligned}
$$

to ignore missing *, e.g.: id id

Pro:	Powerful recovery method
Cons:	Cannot be automated

	id	+	$*$	$($	$)$	\$
E	$\mathrm{E} \rightarrow \mathrm{T} \mathrm{E}_{\mathrm{R}}$			$\mathrm{E} \rightarrow \mathrm{TE}_{\mathrm{R}}$	synch	synch
E_{R}		$\mathrm{E}_{\mathrm{R}} \rightarrow+\mathrm{TE}_{\mathrm{R}}$			$\mathrm{E}_{\mathrm{R}} \rightarrow \varepsilon$	$\mathrm{E}_{\mathrm{R}} \rightarrow \varepsilon$
T	$\mathrm{T} \rightarrow \mathrm{FT}_{\mathrm{R}}$	synch		$\mathrm{T} \rightarrow \mathrm{FT}_{\mathrm{R}}$	synch	synch
T_{R}	$\mathrm{T}_{\mathrm{R}} \rightarrow \mathrm{FT}_{\mathrm{R}}$	$\mathrm{T}_{\mathrm{R}} \rightarrow \varepsilon$	$\mathrm{T}_{\mathrm{R}} \rightarrow^{*} \mathrm{FT}_{\mathrm{R}}$		$\mathrm{T}_{\mathrm{R}} \rightarrow \varepsilon$	$\mathrm{T}_{\mathrm{R}} \rightarrow \varepsilon$
F	$\mathrm{F} \rightarrow$ id	synch	synch	$\mathrm{F} \rightarrow(\mathrm{E})$	synch	synch

Bottom-Up Parsing

- LR methods (Left-to-right, Rightmost derivation)
- SLR, Canonical LR, LALR
- Other special cases:
- Shift-reduce parsing
- Operator-precedence parsing

Operator-Precedence Parsing

- Special case of shift-reduce parsing
- We will not further discuss (you can skip textbook section 4.6)

Shift-Reduce Parsing

Handles

A handle is a substring of grammar symbols in a right-sentential form that matches a right-hand side of a production

Grammar:
$S \rightarrow \mathbf{a} A B \mathbf{e}$
$A \rightarrow A \mathbf{c} \mid \mathbf{b}$
$B \rightarrow \mathbf{d}$

Implementation of Shift-Reduce

Parsing

Conflicts

- Shift-reduce and reduce-reduce conflicts are caused by
- The limitations of the LR parsing method (even when the grammar is unambiguous)
- Ambiguity of the grammar

Shitt-Reduce

Parsing: ShiftReduce Conflicts

| Stack | | Input | Action |
| :--- | :--- | ---: | ---: | :--- |
| | \$...
 \$...if E then S | | \ldots |

Shift-Reduce

Parsing: ReduceReduce Conflicts

LR(k) Parsers: Use a DFA for Shift/Reduce Decisions

DFA for Shift/Reduce Decisions

The states of the DFA are used to determine if a handle is on top of the stack

DFA for Shift/Reduce Decisions

The states of the DFA are used to determine

 if a handle is on top of the stack| Grammar:
 $S \rightarrow C$
 $C \rightarrow A B$
 $A \rightarrow \mathbf{a}$
 $B \rightarrow \mathbf{a}$ |
| :--- |
| State $I_{0}:$
 $S \rightarrow \bullet C$
 $C \rightarrow \bullet A$
 $A \rightarrow \bullet a$ |

Stack	Input	Action
\$0	aa\$	start in state 0
\$ 0	aa\$	shift (and goto state 3)
\$ $0 \underline{a}$	a\$	reduce $A \rightarrow$ a (goto 2)
\$ 0 A 2	a\$	shift (goto 5)
\$ 0 A 2 a 5	\$	reduce $B \rightarrow \mathbf{a}$ (goto 4)
\$ 0 A 2 B 4	\$	reduce $C \rightarrow A B$ (goto 1)
\$ $0 \subset 1$	\$	accept ($S \rightarrow C$)

DFA for Shift/Reduce Decisions

DFA for Shift/Reduce Decisions

$$
\begin{aligned}
& S \rightarrow C \\
& C \rightarrow A B \\
& A \rightarrow \mathbf{a} \\
& B \rightarrow \mathbf{a}
\end{aligned}
$$

The states of the DFA are used to determine if a handle is on top of the stack

Stack	Input	Action
\$ 0	aa\$	start in state 0
\$ 0	aa\$	shift (and goto state 3)
\$ 0 a 3	a\$	reduce $A \rightarrow$ a (goto 2)
\$ 0 A 2	a\$	shift (goto 5)
\$0 ${ }^{\text {d }}$ - \underline{a}^{5}	\$	reduce $B \rightarrow$ a (goto 4)
\$ 0 A 2 B 4	\$	reduce $C \rightarrow A B$ (goto 1)
\$ 0 C 1	\$	accept ($S \rightarrow C$)

DFA for Shift/Reduce Decisions

Grammar:
$S \rightarrow C$
$C \rightarrow A B$
$A \rightarrow \mathbf{a}$
$B \rightarrow \mathbf{a}$

The states of the DFA are used to determine

 if a handle is on top of the stack

Stack	Input	Action
\$ 0	aa\$	start in state 0
\$ 0	aa\$	shift (and goto state 3)
\$ 0 a 3	a\$	reduce $A \rightarrow$ a (goto 2)
\$ 0 A 2	a\$	shift (goto 5)
\$ 0 A 2 a 5	\$	reduce $B \rightarrow \mathbf{a}$ (goto 4)
\$ $\underline{O} \underline{A} 2 \underline{B} 4$	\$	reduce $C \rightarrow A B$ (goto 1)
\$ 0 C 1	\$	accept ($S \rightarrow C$)

DFA for Shift/Reduce Decisions

Grammar:
$S \rightarrow C$
$C \rightarrow A B$
$A \rightarrow \mathbf{a}$
$B \rightarrow \mathbf{a}$

The states of the DFA are used to determine

 if a handle is on top of the stack

O $=$
 Model of an LR Parser

A Configuration of LR

Parsing Algorithm

- A configuration of a LR parsing is:

- S_{m} and a_{i} decides the parser action by consulting the parsing actiontable. (Initial Stack contains just S_{o})
- A configuration of a LR parsing represents the right sentential form:
$X_{1} \ldots X_{m} a_{i} a_{i+1} \ldots a_{n} \$$

Actions of A LR-Parser

1. shift s-- shifts the next input symbol and the state s onto the stack $\left(S_{o} X_{1} S_{1} \ldots X_{m} S_{m}, a_{i} a_{i+1} \ldots a_{n} \$\right) \rightarrow\left(S_{o} X_{1} S_{1} \ldots X_{m} S_{m} a_{i} s, a_{i+1} \ldots a_{n} \$\right)$
2. reduce $\mathrm{A} \rightarrow \boldsymbol{\beta}$ (or rn where n is a production number)

- pop $2|\beta|(=r)$ items from the stack;
- then push \mathbf{A} and s where $\mathrm{s}=\mathrm{goto}\left[\mathrm{s}_{\mathrm{m}-r}, \mathrm{~A}\right]$
$\left(S_{0} X_{1} S_{1} \ldots X_{m} S_{m}, a_{i} a_{i+1} \ldots a_{n} \$\right) \rightarrow\left(S_{0} X_{1} S_{1} \ldots X_{m-r} S_{m-r} A s, a_{i} \ldots a_{n} \$\right)$
- Output is the reducing production reduce $A \rightarrow \beta$

2. Accept - Parsing successfully completed
3. Error -- Parser detected an error (an empty entry in the action table)

Reduce Action

- $\operatorname{pop} 2|\beta|$ (=r) items from the stack; let us assume that $\beta=Y_{1} Y_{2} \ldots Y_{r}$
- then push \mathbf{A} and s where $\mathrm{s}=$ goto $\left[\mathrm{s}_{\mathrm{m}-\mathrm{r}}, \mathrm{A}\right.$]

$$
\begin{aligned}
& \left(S_{0} X_{1} S_{1} \ldots X_{m-r} S_{m-r} Y_{1} S_{m-r+1} \ldots Y_{r} S_{m}, a_{i} a_{i+1} \ldots a_{n} \$\right) \\
& \quad \Rightarrow\left(S_{0} X_{1} S_{1} \ldots X_{m-r} S_{m-r} A s, a_{i} \ldots a_{n} \$\right)
\end{aligned}
$$

- In fact, $Y_{1} Y_{2} \ldots Y_{r}$ is a handle.
$X_{1} \ldots X_{m-r} A a_{i} \ldots a_{n} \$ \Rightarrow X_{1} \ldots X_{m} Y_{1} \ldots Y_{r} a_{i} a_{i+1} \ldots a_{n} \$$

(SLR) Parsing Tables for Expression

 GrammarAction Table
Goto Table

1) $E \rightarrow E+T$	
2) $E \rightarrow T$	
3) $T \rightarrow T^{*} F$	
4) $T \rightarrow F$ 5)	
	$F \rightarrow$ (E)
6) $F \rightarrow i d$	

state	id	+	*	1)	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

SLR Grammars

- SLR (Simple LR): a simple extension of LR(0) shift-reduce parsing
- SLR eliminates some conflicts by populating the parsing table with reductions $A \rightarrow \alpha$ on symbols in FOLLOW (A)

SLR Parsing Table

- Reductions do not fill entire rows
- Otherwise the same as LR(0)

SLR Parsing

- An $L R(0)$ state is a set of $L R(0)$ items
- An LR(0) item is a production with a - (dot) in the right-hand side
- Build the LR(0) DFA by
- Closure operation to construct LR(0) items
- Goto operation to determine transitions
- Construct the SLR parsing table from the DFA
- LR parser program uses the SLR parsing table to determine shift/reduce operations

LR(0) Items of a Grammar

- An $L R(0)$ item of a grammar G is a production of G with a • at some position of the right-hand side
- Thus, a production

$$
A \rightarrow X Y Z
$$

has four items:

$$
\begin{aligned}
& {[A \rightarrow \bullet X Y Z]} \\
& {[A \rightarrow X \bullet Y Z]} \\
& {[A \rightarrow X Y \bullet Z]} \\
& {[A \rightarrow X Y Z \bullet]}
\end{aligned}
$$

- Note that production $A \rightarrow \varepsilon$ has one item $[A \rightarrow \bullet$]

Constructing the set of LR(0)

Items of a

Grammar

1. The grammar is augmented with a new start symbol S^{\prime} and production $S^{\prime} \rightarrow S$
2. Initially, set $C=\operatorname{closure}\left(\left\{\left[S^{\prime} \rightarrow \bullet S\right]\right\}\right)$ (this is the start state of the DFA)
3. For each set of items $I \in C$ and each grammar symbol $X \in(N \cup T)$ such that goto $(I, X) \notin C$ and goto $(I, X) \neq \varnothing$, add the set of items goto($(, X)$ to C
4. Repeat 3 until no more sets can be added to C

The Closure Operation for LR(0) Items

1. Initially, every $L R(0)$ item in I is added to closure(I)
2. If $[A \rightarrow \alpha \bullet B \beta] \in$ closure (I) then for each production $B \rightarrow \gamma$ in the grammar, add the item $[B \rightarrow \bullet \gamma]$ to $/$ if not already in I
3. Repeat 2 until no new items can be added

The Closure Operation (Example)

closure $\left(\left\{\left[E^{\prime} \rightarrow \bullet E\right]\right\}\right)=$

The Goto Operation for $\operatorname{LR}(0)$ Items

1. For each item $[A \rightarrow \alpha \bullet X \beta] \in I$, add the set of items closure $(\{[A \rightarrow \alpha X \bullet \beta]\})$ to goto (I, X) if not already there
2. Repeat step 1 until no more items can be added to goto($(, X)$
3. Intuitively, goto (I, X) is the set of items that are valid for the viable prefix γX when $/$ is the set of items that are valid for γ

The Goto Operation (Example 1)

Suppose $/=$

$$
\begin{aligned}
& \left\{\left[E^{\prime} \rightarrow \bullet E\right]\right. \\
& {[E \rightarrow \bullet E+T]} \\
& {[E \rightarrow \bullet T]} \\
& {\left[T \rightarrow \bullet T^{*} F\right]} \\
& {[T \rightarrow \bullet F]} \\
& {[F \rightarrow \bullet(E)]} \\
& [F \rightarrow \bullet \mathrm{id}]\}
\end{aligned}
$$

Then goto(I,E)
$=\operatorname{closure}\left(\left\{\left[E^{\prime} \rightarrow E \bullet, E \rightarrow E \bullet+T\right]\right\}\right)$
$=\left\{\left[E^{\prime} \rightarrow E \bullet\right]\right.$
$[E \rightarrow E \bullet+T]\}$

$$
\begin{aligned}
& \text { Grammar: } \\
& E \rightarrow E+T \mid T \\
& T \rightarrow T^{*} F \mid F \\
& F \rightarrow(E) \\
& F \rightarrow \text { id }
\end{aligned}
$$

The Goto Operation (Example 2)

Suppose $I=\left\{\left[E^{\prime} \rightarrow E \bullet\right],[E \rightarrow E \bullet+T]\right\}$

Then $\operatorname{goto}(1,+)=\operatorname{closure}(\{[E \rightarrow E+\bullet T]\})=$

> Grammar:
> $E \rightarrow E+T \mid T$
> $T \rightarrow T^{*} F \mid F$
> $F \rightarrow(E)$
> $F \rightarrow$ id

$$
\begin{gathered}
\{[E \rightarrow E+\bullet T] \\
{\left[T \rightarrow \bullet T^{*} F\right]} \\
{[T \rightarrow \bullet F]} \\
{[F \rightarrow \bullet(E)]} \\
[F \rightarrow \bullet i d]\}
\end{gathered}
$$

Constructing SLR Parsing Tables

1. Augment the grammar with $S^{\prime} \rightarrow S$
2. Construct the set $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$ of $L R(0)$ items
3. If $[A \rightarrow \alpha \bullet a \beta] \in I_{i}$ and $\operatorname{goto}\left(l_{i}, a\right)=I_{j}$ thenset action $[i, a]=s h i f t ~ j$
4. If $[A \rightarrow \alpha \bullet] \in I_{i}$ then set action $[i, a]=$ reduce $A \rightarrow \alpha$ for all $a \in \operatorname{FOLLOW}(A)$ (apply only if $A \neq S^{\prime}$)
5. If $\left[S^{\prime} \rightarrow S_{\bullet}\right]$ is in I_{i} then set action $[i, \$]=$ accept
6. If goto $\left(I_{i}, A\right)=I_{j}$ then set goto $[i, A]=j$
7. Repeat $3-6$ until no more entries added
8. The initial state i is the I_{i} holding item $\left[S^{\prime} \rightarrow \bullet S\right.$]

Collection --

$\mathrm{I}_{0}: \mathrm{E}^{\prime} \rightarrow$. E	$\mathrm{I}_{1}: \mathrm{E}^{\prime} \rightarrow \mathrm{E}$.	$\mathrm{I}_{6}: \mathrm{E} \rightarrow \mathrm{E}+. \mathrm{T}$	$\mathrm{I}_{\mathrm{g}}: \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$.
$\mathrm{E} \rightarrow . \mathrm{E}+\mathrm{T}$	$\mathrm{E} \rightarrow \mathrm{E} .+\mathrm{T}$	$\mathrm{T} \rightarrow . \mathrm{T}^{*} \mathrm{~F}$	$\mathrm{T} \rightarrow$ T.*F
$\mathrm{E} \rightarrow$. T		$\mathrm{T} \rightarrow$. F	
$\mathrm{T} \rightarrow . \mathrm{T}^{*} \mathrm{~F}$	$\mathrm{I}_{2}: \mathrm{E} \rightarrow \mathrm{T}$.	$\mathrm{F} \rightarrow$. E)	$\mathrm{I}_{10}: T \rightarrow \mathrm{~T}^{*} \mathrm{~F}$
$\mathrm{T} \rightarrow$. F	$\mathrm{T} \rightarrow \mathrm{T} . * \mathrm{~F}$	$\mathrm{F} \rightarrow$. id	
$\mathrm{F} \rightarrow$.(E)			
F \rightarrow. id	$\mathrm{I}_{3}: T \rightarrow \mathrm{~F}_{0}$	$\mathrm{I}_{7}: \mathrm{T} \rightarrow \mathrm{T}^{*} . \mathrm{F}$	$I_{11}: F \rightarrow(E)$.
		$\mathrm{F} \rightarrow$. E)	
	$\mathrm{I}_{4}: \mathrm{F} \rightarrow(. \mathrm{E})$	$F \rightarrow$.id	
	$\mathrm{E} \rightarrow$.E+T		
	$\mathrm{E} \rightarrow$. T	$\mathrm{I}_{8}: \mathrm{F} \rightarrow\left(\mathrm{E}_{\text {. }}\right.$)	
	$\mathrm{T} \rightarrow . \mathrm{T}^{*} \mathrm{~F}$	$E \rightarrow E .+T$	
	$\mathrm{T} \rightarrow$. F		
	$\mathrm{F} \rightarrow$. (E)		
	$\mathrm{F} \rightarrow$. id		

Transition Diagram (DFA) of Goto Function

Example SLR Grammar and LR(0)

Items

Augmented grammar:

1. $C^{\prime} \rightarrow C$
2. $C \rightarrow A B$
3. $A \rightarrow \mathbf{a}$
4. $B \rightarrow \mathbf{a}$

Example SLR Parsing Table

SLR and Ambiguity

- Every SLR grammar is unambiguous, but not every unambiguous grammar is SLR
- Consider for example the unambiguous grammar

$$
\begin{aligned}
& S \rightarrow L=R \mid R \\
& L \rightarrow{ }^{*} R \mid \text { id } \\
& R \rightarrow L
\end{aligned}
$$

$I_{0}:$
$S^{\prime} \rightarrow \bullet S$
$S \rightarrow \bullet L=R$
$S \rightarrow \bullet R$
$L \rightarrow \bullet * R$
$L \rightarrow \bullet$ id
$R \rightarrow \bullet L$

Has no SLR

I_{9} :

parsing table

$S \rightarrow L_{L_{9}}=R \bullet$

LR(1) Grammars

- SLR too simple
- LR(1) parsing uses lookahead to avoid unnecessary conflicts in parsing table
- $\operatorname{LR}(1)$ item $=\operatorname{LR}(0)$ item + lookahead

LR(0) item:
$[A \rightarrow \alpha \bullet \beta]$
LR(1) item:
$[A \rightarrow \alpha \bullet \beta, a]$

SLR Versus LR(1)

- Split the SLR states by adding LR(1) lookahead
- Unambiguous grammar

1. $S \rightarrow L=R$
2. $\mid R$
3. $L \rightarrow{ }^{*} R$
4. |id
5. $R \rightarrow L$

Should not reduce on $=$, because no right-sentential form begins with $R=$

LR(1) Items

- An LR(1) item

$$
[A \rightarrow \alpha \bullet \beta, a]
$$

contains a lookahead terminal a, meaning α already on top of the stack, expect to see βa

- For items of the form
$[A \rightarrow \alpha \bullet, a]$
the lookahead a is used to reduce $A \rightarrow \alpha$ only if the next input is a
- For items of the form
$[A \rightarrow \alpha \bullet \beta, a]$
with $\beta \neq \varepsilon$ the lookahead has no effect

The Closure Operation for LR(1)

 Items1. Start with closure $(I)=1$
2. If $[A \rightarrow \alpha \bullet B \beta, a] \in$ closure($/$) then for each production $B \rightarrow \gamma$ in the grammar and each terminal $b \in \operatorname{FIRST}(\beta a)$, add the item $[B \rightarrow \bullet \gamma$, b] to / if not already in /
3. Repeat 2 until no new items can be added

The Goto Operation for LR(1) Items

1. For each item $[A \rightarrow \alpha \bullet X \beta, a] \in I$, add the set of items closure $(\{[A \rightarrow \alpha X \bullet \beta, a]\})$ to goto (I, X) if not already there
2. Repeat step 1 until no more items can be added to goto(I, X)

Constructing the set of LR(1)

Items of a

Arammar

1. Augment the grammar with a new start symbol S^{\prime} and production $S^{\prime} \rightarrow S$
2. Initially, set $C=\operatorname{closure}\left(\left\{\left[S^{\prime} \rightarrow \bullet S, \$\right]\right\}\right)$ (this is the start state of the DFA)
3. For each set of items $I \in C$ and each grammar symbol $X \in(N \cup T)$ such that goto $(I, X) \notin C$ and goto $(I, X) \neq \varnothing$, add the set of items goto($(, X)$ to C
4. Repeat 3 until no more sets can be added to C

Example Grammar and LR(1) Items

- Unambiguous LR(1) grammar:

$$
\begin{gathered}
S \rightarrow L=R \\
\mid R \\
L \rightarrow R^{*} R \\
\mid \text { id } \\
R \rightarrow L
\end{gathered}
$$

- Augment with $S^{\prime} \rightarrow S$
- LR(1) items (next slide)

Constructing Canonical LR(1)

Parsing Tables

1. Augment the grammar with $S^{\prime} \rightarrow S$
2. Construct the set $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$ of $\operatorname{LR}(1)$ items
3. If $[A \rightarrow \alpha \bullet a \beta, b] \in I_{i}$ and goto $\left(I_{i}, a\right)=I_{j}$ thenset action $[i, a]=s h i f t ~ j$
4. If $[A \rightarrow \alpha \bullet, a] \in I_{i}$ then set action $[i, a]=$ reduce $A \rightarrow \alpha$ (apply only if $A \neq S^{\prime}$)
5. If $\left[S^{\prime} \rightarrow S \bullet, \$\right]$ is in l_{i} then set action $[i, \$]=$ accept
6. If goto $\left(l_{j}, A\right)=l_{j}$ then set goto $[i, A]=j$
7. Repeat 3-6 until no more entries added
8. The initial state i is the I_{i} holding item $\left[S^{\prime} \rightarrow \bullet S, \$\right.$]

Example LR(1) Parsing Table

Grammar:

1. $S^{\prime} \rightarrow S$
2. $S \rightarrow L=R$
3. $S \rightarrow R$
4. $L \rightarrow{ }^{*} R$
5. $L \rightarrow$ id
6. $R \rightarrow L$

	id	$*$	$=$	$\$$	S	L	R
0	s5	s4			1	2	3
1				acc			
2			s6	r6			
3				r3			
4	s5	s4				8	7
5			r5	r5			
6	s12	s11				10	4
7			r4	r4			
8			r6	r6			
9				r2			
10				r6			
11	s12	s11				10	13
12				r5			
13				r4			

LALR(1) Grammars

- LR(1) parsing tables have many states
- LALR(1) parsing (Look-Ahead LR) combines LR(1) states to reduce table size
- Less powerful than LR(1)
- Will not introduce shift-reduce conflicts, because shifts do not use lookaheads
- May introduce reduce-reduce conflicts, but seldom do so for grammars of programming languages

Constructing LALR(1) Parsing Tables

1. Construct sets of $\operatorname{LR}(1)$ items
2. Combine $\operatorname{LR}(1)$ sets with sets of items that share the same first part

$$
\left.\begin{array}{l}
=] \\
=] \\
=] \\
=] \\
\$] \\
\$] \\
\$] \\
\$]
\end{array}\right\}
$$

$$
\begin{array}{|lr|}
\hline[L \rightarrow * \bullet R, & =/ \$] \\
{[R \rightarrow \bullet L,} & =/ \$] \\
{[L \rightarrow \bullet * R,} & =/ \$] \\
{[L \rightarrow \bullet \text { id, }} & =/ \$]
\end{array}
$$

$$
\begin{aligned}
& I_{4}: \begin{array}{l}
{[L \rightarrow * \bullet R,} \\
{[R \rightarrow \bullet L,} \\
{[L \rightarrow \bullet R,} \\
{[L \rightarrow \bullet i d,}
\end{array} \\
& I_{11}:[L \rightarrow * \bullet R, \\
& {[R \rightarrow \bullet L \text {, }} \\
& {[L \rightarrow \bullet * R \text {, }} \\
& {[L \rightarrow \bullet \text { id, }}
\end{aligned}
$$

Example LALR(1) Grammar

- Unambiguous LR(1) grammar:

$$
\begin{gathered}
S \rightarrow L=R \\
\mid R \\
L \rightarrow R^{*} R \\
\mid \text { id } \\
R \rightarrow L
\end{gathered}
$$

- Augment with $S^{\prime} \rightarrow S$
- LALR(1) items (next slide)

$I_{5}:[L \rightarrow$ id•, $=/ \$]$

Example LALR(1) Parsing Table

Grammar:

1. $S^{\prime} \rightarrow S$
2. $S \rightarrow L=R$
3. $S \rightarrow R$
4. $L \rightarrow{ }^{*} R$
5. $L \rightarrow$ id
6. $R \rightarrow L$

	id	$*$	$=$	$\$$	S	L	R
0	s 5	s 4			1	2	3
1				acc			
2			s 6	r 6			
3				r 3			
4	s 5	s 4				9	7
5			r 5	r 5			
6	s 5	s 4				9	8
7			r 4	r 4			
8				r 2			
9			r 6	r 6			

LL, SLR, LR, LALR Summary

- LL parse tables computed using FIRST/FOLLOW
- Nonterminals \times terminals \rightarrow productions
- Computed using FIRST/FOLLOW
- LR parsing tables computed using closure/goto
- LR states \times terminals \rightarrow shift/reduce actions
- LR states \times nonterminals \rightarrow goto state transitions
- A grammar is
- $\mathrm{LL}(1)$ if its $\mathrm{LL}(1)$ parse table has no conflicts
- SLR if its SLR parse table has no conflicts
- LALR(1) if its LALR(1) parse table has no conflicts
- LR(1) if its LR(1) parse table has no conflicts

Dealing with Ambiguous Grammars

Using Associativity and

Precedence to

Dacnlun Canflinte

- Left-associative operators: reduce
- Right-associative operators: shift
- Operator of higher precedence on stack: reduce
- Operator of lower precedence on stack: shift

Error Detection in LR Parsing

- Canonical LR parser uses full LR(1) parse tables and will never make a single reduction before recognizing the error when a syntax error occurs on the input
- SLR and LALR may still reduce when a syntax error occurs on the input, but will never shift the erroneous input symbol

Error Recovery in LR Parsing

- Panic mode
- Pop until state with a goto on a nonterminal A is found, (where A represents a major programming construct), push A
- Discard input symbols until one is found in the FOLLOW set of A
- Phrase-level recovery
- Implement error routines for every error entry in table
- Error productions
- Pop until state has error production, then shift on stack
- Discard input until symbol is encountered that allows parsing to continue

ANTLR, Yacc, and Bison

- ANTLR tool
- Generates LL(k) parsers
- Yacc (Yet Another Compiler Compiler)
- Generates LALR(1) parsers
- Bison
- Improved version of Yacc

Creating an LALR(1) Parser with Yacc/Bison

Yacc Specification

- A yacc specification consists of three parts:
yacc declarations, and C declarations within \% \{ \% \} \%\%
translation rules
$\%$
user-defined auxiliary procedures
- The translation rules are productions with actions: production $_{1} \quad\left\{\right.$ semantic action $\left._{1}\right\}$
production $_{2} \quad\left\{\right.$ semantic action $\left._{2}\right\}$
production $_{n} \quad\left\{\right.$ semantic action $\left._{n}\right\}$

Writing a Grammar in Yacc

- Productions in Yacc are of the form

```
Nonterminal: tokens/nonterminals { action }
    | tokens/nonterminals {action }
```

- Tokens that are single characters can be used directly within productions, e.g. '+'
- Named tokens must be declared first in the declaration part using
\% token TokenName

Synthesized Attributes

- Semantic actions may refer to values of the synthesized attributes of terminals and nonterminals in a production:

$$
X: Y_{1} Y_{2} Y_{3} \ldots Y_{n} \quad\{\text { action }\}
$$

- $\$ \$$ refers to the value of the attribute of X
- $\$ i$ refers to the value of the attribute of Y_{i}
- For example
factor : '(' expr ')' \{ \$\$=\$2; \}

Example 1

Dealing With Ambiguous Grammars

Example 2

Example 2 (cont'd)

```
%%
int yylex()
{ int c;
    while ((c = getchar()) == ' ')
        ;
    if ((c == '.') || isdigit(c))
    { ungetc(c, stdin);
            scanf("%lf", &yylval);
            return NUMBER;
        }
        return c;
}
int main()
{ if (yyparse() != 0)
            fprintf(stderr, "Abnormal exit\n");
    return 0;
}
int yyerror(char *s)
{ fprintf(stderr, "Error: %s\n", s);
}
```

Crude lexical analyzer for fp doubles and arithmetic operators

Combining Lex/Flex with Yacc/Bison

Lex Specification for Example 2

yacc-d example2.y
lex example2.l
gcc y.tab.c lex.yy.c ./a.out
bison-d -y example2.y flex example2.l
gcc y.tab.c lex.yy.c
./a.out

Error Recovery in Yacc

Semantic Analysis

The Compiler So Far

- Lexical analysis
- Detects inputs with illegal tokens
- Parsing
- Detects inputs with ill-formed parse trees
- Semantic analysis
- Last "front end" phase
- Catches all remaining errors

What's Wrong?

- Example 1

$$
\text { int } y=x+3 ;
$$

- Example 2

String $\mathrm{y}=$ " abc " ;
y ++;

Why a Separate Semantic Analysis?

- Parsing cannot catch some errors
- Some language constructs are not context-free
- Example: All used variables must have been declared (i.e. scoping)
- ex: \{int x \{ .. \{ .. x ..\} ..\} ..\}
- Example: A method must be invoked with arguments of proper type (i.e. typing)
- ex: int f(int, int) $\{\ldots .$.$\} called by f\left({ }^{\prime} a^{\prime}, 2.3,1\right.$)

More problems require semantic analysis

1. Is x a scalar, an array, or a function?
2. Is x declared before it is used?
3. Is x defined before it is used?
4. Are any names declared but not used?
5. Which declaration of x does this reference?
6. Is an expression type-consistent?
7. Does the dimension of a reference match the declaration?
8. Where can x be stored? (heap, stack, . . .)
9. Does *p reference the result of a malloc()?
10. Is an array reference in bounds?
11. Does function foo produce a constant value?

Why is semantic analysis hard?

- need non-local information
- answers depend on values, not on syntax
- answers may involve computation

How can we answer these questions?

1. use context-sensitive grammars (CSG)

- general problem is P-space complete

2. use attribute grammars(AG)

- augment context-free grammar with rules
- calculate attributes for grammar symbols

3. use ad hoc techniques

- augment grammar with arbitrary code
- execute code at corresponding reduction
- store information in attributes, symbol tables

Types

- What is a type?
- The notion varies from language to language
- Consensus
- A set of values
- A set of operations on those values
- Classes are one instantiation of the modern notion of type

Why Do We Need Type Systems?

Consider the assembly language fragment
addi r1, r2, r3

What are the types of $\mathrm{r} 1, \mathrm{r} 2, \mathrm{r} 3$?

Types and Operations

- Certain operations are legal for values of each type
- It doesn't make sense to add a function pointer and an integer in C
- It does make sense to add two integers
- But both have the same assembly language implementation!

Type Systems

- A language's type system specifies which operations are valid for which types
- The goal of type checking is to ensure that operations are used with the correct types
- Enforces intended interpretation of values, because nothing else will!
- Type systems provide a concise formalization of the semantic checking rules

What Can Types do For Us?

- Can detect certain kinds of errors :
- "abc" ++ ; x = ar["abc"] ; int x = "abc" ;
- Memory errors:
- Reading from an invalid pointer, etc.
- int x[50] ; x[50] = 3;
- expressiveness (overloading, polymorphism)
- help determine which methods/constructors would be invoked.
- Ex: add(Complex, Complex), add(int,int), add(String,String),..
- add(23,14) => add(int, int) invoked
- provide information for code generation
- ex: memory size

Type Checking Overview

Three kinds of languages:

Statically typed: All or almost all checking of types is done as part of compilation (C, Java, Cool)

Dynamically typed: Almost all checking of types is done as part of program execution (Scheme)

Untyped: No type checking (machine code)

Pros and cons

Static typing:

- catches many programming errors at compile time
- Avoids overhead of runtime type checks

Dynamic typing:

- Static type systems are restrictive
- Rapid prototyping easier in a dynamic type system

Type checking

Dynamic type checking

performed at run time

more flexible, rapid prototyping

overhead to check run-time type tags

Translation scheme for declarations

- $P \rightarrow D ; E$
- D \rightarrow D; D
- $D \rightarrow i d: T$
- $\mathrm{T} \rightarrow$ char
- T \rightarrow integer
- $\mathrm{T} \rightarrow \uparrow \mathrm{T}_{1}$
\{ addtype(id.entry, T.type) \}
\{ T.type := char \}
\{ T.type := integer \}
\{ T.type := pointer(T. T_{1} type) \}
- $T \rightarrow$ array [num] of T_{1}

$$
\left.\left\{\text { T.type := array(1 .. num.val, } \mathrm{T}_{1} . \text { type }\right)\right\}
$$

Try to derive the annotated parse tree for the declaration X: array[100] of \uparrow char

Type checking for expressions

Once the identifiers and their types have been inserted into the symbol table, we can check the type of the elements of an expression:

- $E \rightarrow$ literal
- $\mathrm{E} \rightarrow$ num
- $E \rightarrow$ id
- $E \rightarrow E_{1} \bmod _{2}$
-
-
- $E \rightarrow E_{1}\left[E_{2}\right]$
- $E \rightarrow E_{1} \uparrow$

```
\{ E.type := char \}
\{ E.type := integer \}
    \{ E.type := lookup(id.entry) \}
\(\left\{\right.\) if \(E_{1}\).type =integer and \(E_{2}\).type = integer
    then E.type := integer
    else E.type := type_error \}
\(\left\{\right.\) if \(\mathrm{E}_{2} \cdot\) type \(=\) integer and \(\mathrm{E}_{1}\).type \(=\operatorname{array}(\mathrm{s}, \mathrm{t})\)
    then E.type := t else E.type := type_error \}
\{ if \(E_{1}\).type \(=\) pointer \((t)\)
    then E.type := t else E.type := type-error \}
```


How about boolean types?

- Try adding

T -> boolean
Relational operators \ll= = >= > <>
Logical connectives and or not

- to the grammar, then add appropriate type checking semantic actions.

Type checking for statements

- Usually we assign the type VOID to statements.
- If a type error is found during type checking, though, we should set the type to type_error
- Let's change our grammar allow statements:
- $\quad P \rightarrow D ; S$
- i.e., a program is a sequence of declarations followed by a sequence of statements.

Type checking for statements

Now we need to add productions and semantic actions:

- $S \rightarrow$ id := E
- $S \rightarrow$ if E then S_{1}
-
- $\mathrm{S} \rightarrow$ while E do S_{1}
- $S \rightarrow S_{1} ; S_{2}$
-
-

\{ if id.type = E.type then S.type := void else S.type := type_error \}
\{ if E.type = boolean then S.type := S_{1}.type else S.type := type_error \}
\{ if E.type = boolean then S.type := S_{1}.type else S.type := type_error \}
$\left\{\right.$ if S_{1}.type $=$ void and S_{2}. type $=$ void then S.type := void else S.type := type_error.

Type checking for function calls

- Suppose we add a production $\mathrm{E} \rightarrow \mathrm{E}(\mathrm{E})$
- Then we need productions for function declarations:

$$
\text { T } \rightarrow \text { T1 } \rightarrow \text { T2 } \quad\{\text { T.type }:=\text { T1.type } \rightarrow \text { T2.type \} }
$$

and function calls:
$\mathrm{E} \rightarrow \mathrm{E} 1(\mathrm{E} 2) \quad \begin{aligned} & \{\text { if E2.type }=\mathrm{s} \text { and E1.type }=\mathrm{s} \rightarrow \mathrm{t} \\ & \\ & \text { then E.type }:=\mathrm{t} \\ & \\ & \\ & \text { else E.type }:=\text { type_error }\}\end{aligned}$

Type checking for function calls

- Multiple-argument functions, however, can be modeled as functions that take a single PRODUCT argument.

$$
\text { root : (real } \rightarrow \text { real) x real } \rightarrow \text { real }
$$

- this would model a function that takes a real function over the reals, and a real, and returns a real.
- In C: float root(float (*f)(float), float x);

Type conversion

- Suppose we encounter an expression $x+i$ where x has type float and i has type int.
- CPU instructions for addition could take EITHER float OR int as operands, but not a mix.
- This means the compiler must sometimes convert the operands of arithmetic expressions to ensure that operands are consistent with operators.
-With postfix as an intermediate language for expressions, we could express the conversion as follows:

> x i inttoreal float+
where real + is the floating point addition operation.

Type coercion

- If type conversion is done by the compiler without the programmer requesting it, it is called IMPLICIT conversion or type COERCION.
- EXPLICIT conversions are those that the programmer specifices,(CASTING) e.g.

$$
x=\text { (int) } y * 2
$$

- Implicit conversion of CONSTANT expressions should be done at compile time.

Type checking example with coercion

$$
\begin{aligned}
& \text { Production Semantic Rule } \\
& \text { E -> num } \\
& \text { E -> num . num } \\
& \text { E -> id } \\
& \text { E } \rightarrow E_{1} \text { op } E_{2} \\
& \text { E.type := integer } \\
& \text { E.type := real } \\
& \text { E.type := lookup(id.entry) } \\
& \text { E.type := if } \mathrm{E}_{1} \text {.type }==\text { integer and } \mathrm{E}_{2} \text {.type == integer } \\
& \text { then integer } \\
& \text { else if } E_{1} \text {.type }==\text { integer and } E_{2} \text {.type }==\text { real } \\
& \text { then real } \\
& \text { else if } E_{1} \text {.type }==\text { real and } E_{2} \text {.type }==\text { integer } \\
& \text { then real } \\
& \text { else if } E_{1} \text {.type }==\text { real and } E_{2} \text {.type }==\text { real } \\
& \text { then real } \\
& \text { else type_error }
\end{aligned}
$$

-THANK YOU !!!!!!

My Blog : anandgharu.wordpress.com

