
PUNE VIDYARTHI GRIHA’s

COLLEGE OF ENGINEERING, NASHIK.

“ CODE OPTIMIZATION ”

3/18/2019

PREPARED BY :

PROF. ANAND N. GHARU

ASSISTANT PROFESSOR

COMPUTER DEPARTMENT

SUBJECT – COMPILER (BE COMPUTER SPPU-2019)

CONTENTS :

Need for Optimization, local, global and loop

optimization, Optimizing transformations, compile

time evaluation, common sub-expression elimination,

variable propagation, code movement, strength

reduction, dead code elimination, DAG based local

optimization, Introduction to global data flow

analysis, Data flow equations and iterative data flow

analysis.

3/18/2019 PROF. ANAND GHARU

• A main goal is to achieve a better

performance

2

Front End

Code Gen

Intermediate

Code source

Code

target

Code

user Machine-

dependent

Compiler

optimizer

Machine-

independent

Compiler

optimizer

Code Optimization :

3/18/2019 PROF. ANAND GHARU

What is optimization?

In computing, optimization is the process of modifying a system to

make some aspect of it work more efficiently or use fewer resources.

For instance, a computer program may be optimized so that it

executes more rapidly, or is capable of operating with less memory

storage or other resources, or draw less power. The system may be a

single computer program, a collection of computers or even an entire

network such as the internet.

3/18/2019 PROF. ANAND GHARU

Optimization is of two types

1. Machine Dependent optimization

2. Machine independent

The machine dependent optimization is based on

characteristics of the target machine (the instruction set

used and addressing modes used for the instructions) to

generate efficient target code.

The machine independent optimization is based on the

characteristics of the programming languages for

appropriate programming structure and usage of efficient

arithmetic properties in order to reduce execution time

TYPES OF OPTIMIZATION

3/18/2019 PROF. ANAND GHARU

Code Optimization Techniques
Constant propagation

If the value of a variable is a constant, then replace the variable

by the constant

It is not the constant definition, but a variable is assigned to

a constant

The variable may not always be a constant

E.g.

N := 10; C := 2;

for (i:=0; i<N; i++) { s := s + i*C; }

 for (i:=0; i<10; i++) { s := s + i*2; }

If (C) go to … go to …

The other branch, if any, can be eliminated by other

optimizations

Requirement:

After a constant assignment to the variable

Until next assignment of the variable

Perform data flow analysis to determine the propagation

3/18/2019 PROF. ANAND GHARU

Code Optimization Techniques
Constant folding

In a statement x := y op z or x := op y

If y and z are constants

Then the value can be computed at compilation time

Example

#define M 10

x := 2 * M x := 20

If (M < 0) goto L can be eliminated

y := 10 * 5 y := 50

Difference: constant propagation and folding

Propagation: only substitute a variable by its assigned constant

Folding: Consider variables whose values can be computed at compilation time

and controls whose decision can be determined at compilation time
3/18/2019 PROF. ANAND GHARU

Code Optimization Techniques

Algebraic simplification
More general form of constant folding, e.g.,

x + 0 x x – 0 x

x * 1 x x / 1 x

x * 0 0

Repeatedly apply the rules

(y * 1 + 0) / 1 y

Strength reduction
Replace expensive operations

E.g., x := x * 8 x := x << 3

3/18/2019 PROF. ANAND GHARU

Code Optimization Techniques
Copy propagation

Extension of constant propagation

After y is assigned to x, use y to replace x till x is assigned

again

Example

x := y; s := y * f(y)

s := x * f(x)

Reduce the copying

If y is reassigned in between, then this action cannot be

performed

3/18/2019 PROF. ANAND GHARU

Code Optimization Techniques
Common subexpression elimination

Example:

a := b + c a := b + c

c := b + c c := a

d := b + c d := b + c

Example in array index calculations

c[i+1] := a[i+1] + b[i+1]

During address computation, i+1 should be reused

Not visible in high level code, but in intermediate

code

3/18/2019 PROF. ANAND GHARU

Code Optimization Techniques
Unreacheable code elimination

Construct the control flow graph
Unreachable code block will not have an incoming edge
After constant propagation/folding, unreachable branches can be eliminated

Dead code elimination
Ineffective statements

x := y + 1 (immediately redefined, eliminate!)
y := 5 y := 5
x := 2 * z x := 2 * z

A variable is dead if it is never used after last definition
Eliminate assignments to dead variables

Need to do data flow analysis to find dead variables

3/18/2019 PROF. ANAND GHARU

Code Optimization Techniques

Loop optimization Techniques

• Loop invariant detection and code

motion

• Induction variable elimination

• Strength reduction in loops

• Loop unrolling

• Loop peeling

• Loop fusion
 3/18/2019 PROF. ANAND GHARU

Code Optimization Techniques

Loop invariant detection and code motion
If the result of a statement or expression does not

change within a loop, and it has no external side-effect

Computation can be moved to outside of the loop

Example

for (i=0; i<n; i++) a[i] := a[i] + x/y;

Three address code

 for (i=0; i<n; i++) { c := x/y; a[i] := a[i] +

c; }

 c := x/y;

 for (i=0; i<n; i++) a[i] := a[i] + c;

3/18/2019 PROF. ANAND GHARU

Code Optimization Techniques

Strength reduction in loops
Example

s := 0; for (i=0; i<n; i++) { v := 4 * i; s := s + v;)
s := 0; for (i=0; i<n; i++) { v := v + 4; s := s + v;)

Induction variable elimination
If there are multiple induction variables in a loop, can eliminate

the ones which are used only in the test condition

Example

s := 0; for (i=0; i<n; i++) { s := 4 * i; … } -- i is not

referenced in loop

 s := 0; e := 4*n; while (s < e) { s := s + 4; }

3/18/2019 PROF. ANAND GHARU

Code Optimization Techniques
Loop unrolling

Execute loop body multiple times at each iteration

Get rid of the conditional branches, if possible

Allow optimization to cross multiple iterations of the loop

Especially for parallel instruction execution

Space time tradeoff

Increase in code size, reduce some instructions

Loop peeling
Similar to unrolling

But unroll the first and/or last few iterations

3/18/2019 PROF. ANAND GHARU

Code Optimization Techniques
Loop fusion

Example
for i=1 to N do
 A[i] = B[i] + 1
endfor
for i=1 to N do
 C[i] = A[i] / 2
endfor
for i=1 to N do
 D[i] = 1 / C[i+1]
endfor

Before Loop Fusion

for i=1 to N do

 A[i] = B[i] + 1

 C[i] = A[i] / 2

 D[i] = 1 / C[i+1]

endfor

 Is this correct?

 Actually, cannot fuse

 the third loop

3/18/2019 PROF. ANAND GHARU

Principle sources of optimization

• Local optimization: within a basic block

• Global optimization: otherwise

• Mixed

3

3/18/2019 PROF. ANAND GHARU

PRINCIPLE SOURCES OF

OPTIMIZATION

• Function Preserving Transformations :

i) Common Subexpression Elimination

ii)Copy Propogation

iii)Dead – code Elimination

iv)Constant folding

v)Loop Optimization : Code Motion, Strength

Reduction, Induction Variable Elimination

4

3/18/2019 PROF. ANAND GHARU

5

Classic Examples of Local and

Global Code Optimizations
• Local

– Constant folding

– Constant combining

– Strength reduction

– Constant propagation

– Common subexpression

elimination

– Backward copy propagation

• Global

– Dead code elimination

– Constant propagation

– Forward copy propagation

– Common subexpression

elimination

– Code motion

– Loop strength reduction

– Induction variable

elimination

3/18/2019 PROF. ANAND GHARU

6

Local: Constant Folding

r7 = 4 + 1

r5 = 2 * r4

r6 = r5 * 2

src2(X) = 1

src1(X) = 4

• Goal: eliminate

unnecessary

operations

• Rules:

1. X is an arithmetic

operation

2. If src1(X) and src2(X)

are constant, then

change X by applying

the operation

3/18/2019 PROF. ANAND GHARU

7

Local: Constant Combining

r7 = 5

r5 = 2 * r4

r6 = r5 * 2

r6 = r4 * 4

• Goal: eliminate
unnecessary operations

– First operation often
becomes dead after
constant combining

• Rules:

1. Operations X and Y in
same basic block

2. X and Y have at least one
literal src

3. Y uses dest(X)

4. None of the srcs of X have
defs between X and Y
(excluding Y)

3/18/2019 PROF. ANAND GHARU

8

Local: Strength Reduction

r7 = 5

r5 = 2 * r4

r6 = r4 * 4

r6 = r4 << 2

r5 = r4 + r4

• Goal: replace
expensive operations
with cheaper ones

• Rules (common):

1. X is an multiplication
operation where
src1(X) or src2(X) is a
const 2k integer literal

2. Change X by using
shift operation

3. For k=1 can use add

3/18/2019 PROF. ANAND GHARU

9

Local: Constant Propagation

r1 = 5

r2 = _x

r3 = 7

r4 = r4 + r1

r1 = r1 + r2

r1 = r1 + 1

r3 = 12

r8 = r1 - r2

r9 = r3 + r5

r3 = r2 + 1

r7 = r3 - r1

M[r7] = 0

• Goal: replace register
uses with literals
(constants) in a single
basic block

• Rules:
1. Operation X is a move to

register with src1(X) literal

2. Operation Y uses dest(X)

3. There is no def of dest(X)
between X and Y
(excluding defs at X and Y)

4. Replace dest(X) in Y with
src1(X)

r8 = 5 + _x + 1 - _x

r9 = 12 + r5

r3 = _x + 1

r4 = r4 + 5

r1 = 5 + _x

r1 = 5 + _x + 1

r7 = _x + 1 - 5 - _x - 1

3/18/2019 PROF. ANAND GHARU

10

Local: Common Subexpression

Elimination (CSE)
• Goal: eliminate re-

computations of an expression

– More efficient code

– Resulting moves can get copy
propagated (see later)

• Rules:

1. Operations X and Y have the
same opcode and Y follows X

2. src(X) = src(Y) for all srcs

3. For all srcs, no def of a src
between X and Y (excluding
Y)

4. No def of dest(X) between X
and Y (excluding X and Y)

5. Replace Y with move dest(Y)

= dest(X)

r1 = r2 + r3

r4 = r4 + 1

r1 = 6

r6 = r2 + r3

r2 = r1 - 1

r5 = r4 + 1

r7 = r2 + r3

r5 = r1 - 1 r5 = r2

3/18/2019 PROF. ANAND GHARU

11

Local: Backward Copy

Propagation
r1 = r8 + r9

r2 = r9 + r1

r4 = r2

r6 = r2 + 1

r9 = r1

r7 = r6

r5 = r7 + 1

r4 = 0

r8 = r2 + r7

• Goal: propagate LHS of

moves backward

– Eliminates useless moves

• Rules (dataflow required)
1. X and Y in same block

2. Y is a move to register

3. dest(X) is a register that is not live
out of the block

4. Y uses dest(X)

5. dest(Y) not used or defined
between X and Y (excluding X
and Y)

6. No uses of dest(X) after the first
redef of dest(Y)

7. Replace src(Y) on path from X to
Y with dest(X) and remove Y

r7 = r2 + 1

r6 not live

remove r7 = r6

3/18/2019 PROF. ANAND GHARU

12

Global: Dead Code Elimination

r4 = r4 + 1

r7 = r1 * r4

r3 = r3 + 1 r2 = 0

r3 = r2 + r1

M[r1] = r3

r1 = 3

r2 = 10
• Goal: eliminate any operation

who’s result is never used

• Rules (dataflow required)

1. X is an operation with no use
in def-use (DU) chain, i.e.
dest(X) is not live

2. Delete X if removable (not a
mem store or branch)

• Rules too simple!

– Misses deletion of r4, even
after deleting r7, since r4 is

live in loop

– Better is to trace UD chains
backwards from “critical”
operations

r7 not live

3/18/2019 PROF. ANAND GHARU

13

Global: Constant Propagation

r5 = 2

r7 = r1 * r5

r3 = r3 + r5 r2 = 0

r3 = r2 + r1

r6 = r7 * r4

M[r1] = r3

r1 = 4

r2 = 10
• Goal: globally replace

register uses with literals

• Rules (dataflow required)

1. X is a move to a register
with src1(X) literal

2. Y uses dest(X)

3. dest(X) has only one def at
X for use-def (UD) chains
to Y

4. Replace dest(X) in Y with
src1(X)

r7 = 8

r3 = r3 + 2

M[4] = r3

r3 = r2 + 4

r6 = 8 * r4

3/18/2019 PROF. ANAND GHARU

14

Global: Forward Copy

Propagation

r1 = r2

r3 = r4

r6 = r3 + 1 r2 = 0

r5 = r2 + r3

• Goal: globally propagate

RHS of moves forward

– Reduces dependence chain

– May be possible to eliminate
moves

• Rules (dataflow required)
1. X is a move with src1(X)

register

2. Y uses dest(X)

3. dest(X) has only one def at X

for UD chains to Y

4. src1(X) has no def on any path
from X to Y

5. Replace dest(X) in Y with
src1(X)

r6 = r4 + 1

r5 = r2 + r4

3/18/2019 PROF. ANAND GHARU

15

Global: Common Subexpression

Elimination (CSE)

r3 = r4 / r7

r2 = r2 + 1

r3 = r3 + 1
r1 = r3 * 7

r5 = r2 * r6

r8 = r4 / r7

r9 = r3 * 7

r1 = r2 * r6 • Goal: eliminate
recomputations of an
expression

• Rules:
1. X and Y have the same

opcode and X dominates Y

2. src(X) = src(Y) for all srcs

3. For all srcs, no def of a src on
any path between X and Y
(excluding Y)

4. Insert rx = dest(X)
immediately after X for new
register rx

5. Replace Y with move dest(Y)

= rx

r8 = r10

r10 = r3

3/18/2019 PROF. ANAND GHARU

16

Global: Code Motion

r4 = M[r5]

r7 = r4 * 3

r8 = r2 + 1

r7 = r8 * r4
r3 = r2 + 1

r1 = r1 + r7

M[r1] = r3

r1 = 0

header

• Goal: move loop-invariant

computations to preheader

• Rules:

1. Operation X in block that
dominates all exit blocks

2. X is the only operation to

modify dest(X) in loop body

3. All srcs of X have no defs in
any of the basic blocks in the
loop body

4. Move X to end of preheader

5. Note 1: if one src of X is a
memory load, need to check
for stores in loop body

6. Note 2: X must be movable

and not cause exceptions

preheader

r4 = M[r5]

3/18/2019 PROF. ANAND GHARU

17

Global: Loop Strength Reduction

i := 0

t1 := n-2

t2 := 4*i

A[t2] := 0

i := i+1

if i < t1 goto B2

B1:

B2:

B3:

i := 0

t1 := n-2

t2 := 4*i

A[t2] := 0

i := i+1

t2 := t2+4

if i < t1 goto B2

B1:

B2:

B3:

Replace expensive computations with induction variables
3/18/2019 PROF. ANAND GHARU

18

Global: Induction Variable

Elimination

i := 0

t1 := n-2

t2 := 4*i

A[t2] := 0

i := i+1

t2 := t2+4

if i<t1 goto B2

B1:

B2:

B3:

t1 := 4*n

t1 := t1-8

t2 := 4*i

A[t2] := 0

t2 := t2+4

if t2<t1 goto B2

B1:

B2:

B3:

Replace induction variable in expressions with another
3/18/2019 PROF. ANAND GHARU

19

The Code Optimizer

• Control flow analysis

• Data-flow analysis

• Transformations

Front

end

Code

generator

Code

optimizer

Control-

flow

analysis

Data-

flow

analysis

Transfor-

mations

3/18/2019 PROF. ANAND GHARU

20

Determining Loops in Flow

Graphs: Dominators

• Dominators: d dom n

– Node d of a CFG dominates node n if every path from

the initial node of the CFG to n goes through d

– The loop entry dominates all nodes in the loop

• The immediate dominator m of a node n is the last

dominator on the path from the initial node to n

– If d n and d dom n then d dom m

3/18/2019 PROF. ANAND GHARU

21

Dominator Trees

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

CFG Dominator tree
3/18/2019 PROF. ANAND GHARU

22

Natural Loops

• A back edge is is an edge a b whose head b

dominates its tail a

• Given a back edge n d

– The natural loop consists of d plus the nodes that can
reach n without going through d

– The loop header is node d

• Unless two loops have the same header, they are
disjoint or one is nested within the other

– A nested loop is an inner loop if it contains no other
loops

3/18/2019 PROF. ANAND GHARU

23

Natural Inner Loops Example

1

2

3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

CFG Dominator tree

Natural loop

for 7 dom 10

Natural loop

for 3 dom 4

Natural loop

for 4 dom 7

3/18/2019 PROF. ANAND GHARU

24

Natural Outer Loops Example

2

3

4

5 6

7

8

9 10

2 3

4

5 6 7

8

9 10

CFG Dominator tree

Natural loop
for 1 dom 9

1 1

Natural loop

for 3 dom 8

3/18/2019 PROF. ANAND GHARU

25

Pre-Headers

• To facilitate loop transformations, a

compiler often adds a preheader to a loop

• Code motion, strength reduction, and other

loop transformations populate the preheader

Header Header

Preheader

3/18/2019 PROF. ANAND GHARU

27

Data Flow Analysis

Data flow analysis is used to collect information

about the flow of data values across basic blocks.

•Dominator analysis collected global information regarding the

program’s structure

•For performing global code optimizations global information

must be collected regarding values of program variables.

– Local optimizations involve statements from same basic block

– Global optimizations involve statements from different basic blocks

 data flow analysis is performed to collect global information that

drives global optimizations

3/18/2019 PROF. ANAND GHARU

28

Local and Global

Optimization

3/18/2019 PROF. ANAND GHARU

Applications of Data Flow

Analysis
• Applicability of code optimizations

• Symbolic debugging of code

• Static error checking

• Type inference

• …….

29

3/18/2019 PROF. ANAND GHARU

Global Data Flow Analysis
• These Analyze following properties :

1. Reaching Definitions : Constant Propagation, Dead code

Elimination, copy propogation

2. Available Expressions : Common Subexpression Elimination

3. Live Variable Analysis : Register Allocation

4. Very Busy Expressions : Dead code Elimination , Register

Allocation

30

3/18/2019 PROF. ANAND GHARU

Data Flow Equation

Data Flow Analysis is done by the equation :

Out[S] = gen[S] U (in[S] – kill[S])

i.e information at the end is either generated

within the statement or at the beginning

and not killed as control flows through the

statement

31

3/18/2019 PROF. ANAND GHARU

1. Reaching Definitions
Definition d of variable v: a statement d that assigns a value

to v.

Use of variable v: reference to value of v in an expression

evaluation.

Definition d of variable v reaches a point p if there exists a

path from immediately after d to p such that definition d is

not killed along the path.

Definition d is killed along a path between two points if there

exists an assignment to variable v along the path.

32

3/18/2019 PROF. ANAND GHARU

Example
33

d reaches u along path2 & d does not reach u along path1

Since there exists a path from d to u along which d is not
killed (i.e., path2), d reaches u.

3/18/2019 PROF. ANAND GHARU

Computing Reaching Definitions

At each program point p, we compute the set of

definitions that reach point p.

Reaching definitions are computed by solving a

system of equations (data flow equations).

34

d1: X=…

IN[B]

OUT[B]

GEN[B] ={d1}
KILL[B]={d2,d3}

d2: X=… d3: X=…

3/18/2019 PROF. ANAND GHARU

35

GEN[B]: Definitions within B that reach the end of B.
KILL[B]: Definitions that never reach the end of B due

to redefinitions of variables in B.

Data Flow Equations
IN[B]: Definitions that reach B’s entry.
OUT[B]: Definitions that reach B’s exit.

3/18/2019 PROF. ANAND GHARU

Reaching Definitions Contd.
• Forward problem – information flows

forward in the direction of edges.

• May problem – there is a path along which

definition reaches a point but it does not

always reach the point.

Therefore in a May problem the meet

operator is the Union operator.

36

3/18/2019 PROF. ANAND GHARU

Applications of Reaching

Definitions
• Constant

Propagation/folding

• Copy Propagation

37

3/18/2019 PROF. ANAND GHARU

2. Available Expressions
An expression is generated at a point if it is computed at that

point.

An expression is killed by redefinitions of operands of the

expression.

An expression A+B is available at a point if every path from

the start node to the point evaluates A+B and after the last

evaluation of A+B on each path there is no redefinition of

either A or B (i.e., A+B is not killed).

38

3/18/2019 PROF. ANAND GHARU

Available Expressions

Available expressions problem computes: at each program

point the set of expressions available at that point.

39

3/18/2019 PROF. ANAND GHARU

40

GEN[B]: Expressions computed within B that are
available at the end of B.

KILL[B]: Expressions whose operands are redefined in B.

Data Flow Equations
IN[B]: Expressions available at B’s entry.
OUT[B]: Expressions available at B’s exit.

3/18/2019 PROF. ANAND GHARU

Available Expressions Contd.
• Forward problem – information flows

forward in the direction of edges.

• Must problem – expression is definitely

available at a point along all paths.

Therefore in a Must problem the meet

operator is the Intersection operator.

41

3/18/2019 PROF. ANAND GHARU

Applications of Available

Expressions

• Common Subexpression Elimination

42

3/18/2019 PROF. ANAND GHARU

3. Live Variable Analysis
43

A path is X-clear is it contains no definition of X.

A variable X is live at point p if there exists a X-clear path

from p to a use of X; otherwise X is dead at p.

Live Variable Analysis
Computes:

At each program
point p identify the
set of variables that
are live at p.

3/18/2019 PROF. ANAND GHARU

44

GEN[B]: Variables that are used in B prior to their
definition in B.

KILL[B]: Variables definitely assigned value in B before
any use of that variable in B.

Data Flow Equations
IN[B]: Variables live at B’s entry.
OUT[B]: Variables live at B’s exit.

3/18/2019 PROF. ANAND GHARU

Live Variables Contd.

• Backward problem – information flows

backward in reverse of the direction of

edges.

• May problem – there exists a path along

which a use is encountered.

Therefore in a May problem the meet

operator is the Union operator.

45

3/18/2019 PROF. ANAND GHARU

Applications of Live Variables

• Register Allocation

• Dead Code

Elimination

• Code Motion

Out of Loops

46

3/18/2019 PROF. ANAND GHARU

4. Very Busy Expressions
47

A expression A+B is very busy at point p if for all paths

starting at p and ending at the end of the program, an

evaluation of A+B appears before any definition of A or B.

Application:
Code Size Reduction

Compute for each program point the set of
very busy expressions at the point.

3/18/2019 PROF. ANAND GHARU

Data Flow Equations

48

GEN[B]: Expression computed in B and variables used in
the expression are not redefined in B prior to
expression’s evaluation in B.

KILL[B]: Expressions that use variables that are
redefined in B.

IN[B]: Expressions very busy at B’s entry.
OUT[B]: Expressions very busy at B’s exit.

3/18/2019 PROF. ANAND GHARU

Very Busy Expressions Contd.

• Backward problem – information flows

backward in reverse of the direction of

edges.

• Must problem – expressions must be

computed along all paths.

Therefore in a Must problem the meet

operator is the Intersection operator.

49

3/18/2019 PROF. ANAND GHARU

Summary

May/Union Must/Intersecti
on

Forward Reaching
Definitions

Available
Expressions

Backward Live
Variables

Very Busy
Expressions

50

3/18/2019 PROF. ANAND GHARU

51

Reaching Definitions

S d: a:=b+c

Then, the data-flow equations for S are:

gen[S]

kill[S]

out[S]

= {d}

= Da - {d}

= gen[S] (in[S] - kill[S])

where Da = all definitions of a in the region of code

is of the form

3/18/2019 PROF. ANAND GHARU

52

Reaching Definitions

S

gen[S]

kill[S]

in[S1]

in[S2]

out[S]

= gen[S2] (gen[S1] - kill[S2])
= kill[S2] (kill[S1] - gen[S2])

= in[S]

= out[S1]

= out[S2]

is of the form

S2

S1

3/18/2019 PROF. ANAND GHARU

53

Reaching Definitions

S

gen[S]

kill[S]

in[S1]

in[S2]

out[S]

= gen[S1] gen[S2]
= kill[S1] kill[S2]

= in[S]

= in[S]

= out[S1] out[S2]

is of the form

S2 S1

3/18/2019 PROF. ANAND GHARU

54

Reaching Definitions

S

gen[S]

kill[S]

in[S1]

out[S]

= gen[S1]

= kill[S1]

= in[S] gen[S1]

= out[S1]

is of the form

S1

3/18/2019 PROF. ANAND GHARU

55

Example Reaching Definitions
d1: i := m-1;

d2: j := n;

d3: a := u1;

do

d4: i := i+1;

d5: j := j-1;

if e1 then

d6: a := u2

else

d7: i := u3

while e2

;

gen={d1}

kill={d4, d7}
d1

gen={d2}

kill={d5}
d2

1 2

kill={d4,d5,d7}

;

d3

gen={d ,d } gen={d } 3

kill={d6}

gen={d1,d2,d3}

kill={d4,d5,d6,d7}

; gen={d3,d4,d5,d6,d7}

kill={d1,d2}

do

;

gen={d4}

kill={d1, d7}
d4

;

gen={d5}

kill={d2}
d5

if

e1

d6 d7
e1 gen={d6}

kill={d3}

gen={d7}

kill={d1,d4}

gen={d4,d5}

kill={d1,d2,d7}

gen={d4,d5,d6,d7}

kill={d1,d2}

gen={d4,d5,d6,d7}

1 2 kill={d ,d }

gen={d6,d7}

kill={}

3/18/2019 PROF. ANAND GHARU

56

Using Bit-Vectors to Compute

Reaching Definitions
d1: i := m-1;

d2: j := n;

d3: a := u1;

do

d4: i := i+1;

d5: j := j-1;

if e1 then

d6: a := u2

else

d7: i := u3

while e2

;

d1 d2

;

d3

;
0011111

1100000

do

;

d4

;

d5

if

e1

d6 d7
e1

1110000

0001111

1100000

0001101

1000000

0001001

0100000

0000100

0010000

0000010

0001111

1100000

0001111

1100000

0001100

1100001

0001000

1000001

0000100

0100000

0000010

0010000

0000001

1001000

0000011

0000000

3/18/2019 PROF. ANAND GHARU

57

Computation of in and out sets …for

reaching definitions

for all basic blocks BB

for all basic blocks BB

change = true

while (change) do

change = false

for each basic block BB, do

old_out = out(BB)

in(BB) = U(out(Y)) for all predecessors Y of BB

out(BB) = gen(BB) + (in(BB) – kill(BB))

if (old_out != out(BB)) then change = true

endfor

endfor

in(BB) =

out(BB) = gen(BB)

3/18/2019 PROF. ANAND GHARU

58

Example Reaching Definitions
d1: i := m-1;

d2: j := n;

d3: a := u1;

do

d4: i := i+1;

d5: j := j-1;

if e1 then

d6: a := u2

else

d7: i := u3

while e2

d1: i := m-1;

d2: j := n;

d3: a := u1;

d4: i := i+1;

5
d : j := j-1;

d7: i := u3 d6: a := u2

3/18/2019 PROF. ANAND GHARU

Block

s

Initial Pass1 Pass2

In Out In Out In Out

B1 0000000 1110000 0000000 1110000 0000000 1110000

B2 0000000 0001100 1110011 0011110 1111111 0011110

B3 0000000 0000010 0011110 0001110 0011110 0001110

B4 0000000 0000001 0011110 0010111 0011110 0010111

59

in(BB) = U(out(Y)) for all predecessors Y of BB

out(BB) = gen(BB) U (in(BB) – kill(BB))

Since out[B] of pass1 = out[B] of pass2 ….We Stop
3/18/2019 PROF. ANAND GHARU

Pass2

In Out

0000000 1110000

1111111 0011110

0011110 0001110

0011110 0010111

60

Thus we can finally say that

at the end of block 4 the

final definitions reaching

are

d3, d5, d6, d7

3/18/2019 PROF. ANAND GHARU

61

Computation of in and out sets …for

available expressions

endfor

in(B1) =

out(B1) = gen(B1)

for B ≠ B1 do out[B] := U - kill[B]

change = true

while (change) do

change = false

for B ≠ B1, do begin

in(B) = ∩ (out(P)) for all predecessors P of BB

old_out = out(B)

out(B) = gen(B) U (in(B) – kill(B))

if (old_out != out(BB)) then change = true

endfor

3/18/2019 PROF. ANAND GHARU

62

Live Variable (Liveness) Analysis

• Liveness: For each point p in a program and each variable
y, determine whether y can be used before being redefined,
starting at p.

• Attributes

– use = set of variable used in the B prior to its definition

– def = set of variables defined in B prior to any use of the variable

– in = set of variables that are live at the entry point of a B

– out = set of variables that are live at the exit point of a B

3/18/2019 PROF. ANAND GHARU

63

Live Variable (Liveness) Analysis

– 1st Equation: a var is live, coming in the block, if either
•it is used before redefinition in B

or

•it is live coming out of B and is not redefined in B

– 2nd Equation: a var is live coming out of B, iff it is live
coming in to one of its successors.

(out[B] def [B])

in[S]

• Data flow equations:

in[B] use[B]

out[B]

S succ(B)

3/18/2019 PROF. ANAND GHARU

Example: Liveness

r1 = r2 + r3

r6 = r4 – r5

r4 = 4

r6 = 8

r6 = r2 + r3

r7 = r4 – r5

r2, r3, r4, r5 are all live as they

are consumed later, r6 is dead

as it is redefined later

r4 is dead, as it is redefined.

So is r6. r2, r3, r5 are live

What does this mean?

r6 = r4 – r5 is useless,

it produces a dead value !!

Get rid of it!

64
3/18/2019 PROF. ANAND GHARU

 MY BLOG : anandgharu.wordpress.com

THANK YOU!!!!!!!!!!

3/18/2019
PROF. ANAND GHARU

