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• A main goal is to achieve a better  

performance 

2 

 

Front End 

 

Code Gen 

Intermediate  

Code source 

Code 

target 

Code 

user Machine- 

dependent  

Compiler  

optimizer 

Machine- 

independent  

Compiler  

optimizer 

Code Optimization : 
 

3/18/2019 PROF. ANAND GHARU 



What is optimization? 

  

In computing, optimization is the process of modifying a system to  

make some aspect of it work more efficiently or use fewer resources.  

For instance, a computer program may be optimized so that it  

executes more rapidly, or is capable of operating with less memory  

storage or other resources, or draw less power. The system may be a  

single computer program, a collection of computers or even an entire  

network such as the internet. 
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Optimization is of two types 

1. Machine Dependent optimization 

2. Machine independent  

The machine dependent optimization is based on 

characteristics of the  target machine (the instruction set 

used and addressing modes used for  the instructions) to 

generate efficient target code. 

 

The machine independent optimization is based on the 

characteristics of  the programming languages for 

appropriate programming structure and  usage of efficient 

arithmetic properties in order to reduce execution time 

TYPES OF OPTIMIZATION 
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Code Optimization Techniques 
Constant propagation 

If the value of a variable is a constant, then replace the variable 

by the constant 

It is not the constant definition, but a variable is assigned to 

a constant 

The variable may not always be a constant 

E.g. 

N := 10;  C := 2; 

for (i:=0; i<N; i++) { s := s + i*C; } 

       for (i:=0; i<10; i++) { s := s + i*2; } 

If (C) go to …  go to …   

The other branch, if any, can be eliminated by other 

optimizations 

Requirement: 

After a constant assignment to the variable 

Until next assignment of the variable 

Perform data flow analysis to determine the propagation 
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Code Optimization Techniques 
Constant folding 

In a statement x := y op z or x := op y 

If y and z are constants 

Then the value can be computed at compilation time 

Example 

#define M 10 

x := 2 * M  x := 20 

If (M < 0) goto L  can be eliminated 

y := 10 * 5  y := 50 

Difference: constant propagation and folding 

Propagation: only substitute a variable by its assigned constant 

Folding: Consider variables whose values can be computed at compilation time 

and controls whose decision can be determined at compilation time 
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Code Optimization Techniques 

Algebraic simplification 
More general form of constant folding, e.g., 

x + 0  x x – 0  x 

x * 1  x x / 1  x 

x * 0  0 

Repeatedly apply the rules 

(y * 1 + 0) / 1  y 

 

Strength reduction 
Replace expensive operations 

E.g., x := x * 8  x := x << 3 

3/18/2019 PROF. ANAND GHARU 



Code Optimization Techniques 
Copy propagation 

Extension of constant propagation 

After y is assigned to x, use y to replace x till x is assigned 

again 

Example 

x := y;    s := y * f(y) 

s := x * f(x) 

Reduce the copying 

If y is reassigned in between, then this action cannot be 

performed 
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Code Optimization Techniques 
Common subexpression elimination 

Example: 

a := b + c   a := b + c 

c := b + c    c := a 

d := b + c   d := b + c 

Example in array index calculations 

c[i+1] := a[i+1] + b[i+1] 

During address computation, i+1 should be reused 

Not visible in high level code, but in intermediate 

code 
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Code Optimization Techniques 
Unreacheable code elimination 

Construct the control flow graph 
Unreachable code block will not have an incoming edge 
After constant propagation/folding, unreachable branches can be eliminated 

Dead code elimination 
Ineffective statements 

x := y + 1  (immediately redefined, eliminate!) 
y := 5    y := 5 
x := 2 * z  x := 2 * z 

A variable is dead if it is never used after last definition 
Eliminate assignments to dead variables 

Need to do data flow analysis to find dead variables 
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Code Optimization Techniques 

Loop optimization Techniques 
 

• Loop invariant detection and code 

motion 

• Induction variable elimination 

• Strength reduction in loops 

• Loop unrolling 

• Loop peeling 

• Loop fusion 
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Code Optimization Techniques 

Loop invariant detection and code motion 
If the result of a statement or expression does not 

change within a loop, and it has no external side-effect 

Computation can be moved to outside of the loop 

Example 

for (i=0; i<n; i++) a[i] := a[i] + x/y; 

Three address code 

    for (i=0; i<n; i++) { c := x/y; a[i] := a[i] + 

c; } 

 c := x/y;  

     for (i=0; i<n; i++) a[i] := a[i] + c; 
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Code Optimization Techniques 

Strength reduction in loops 
Example 

s := 0;  for (i=0; i<n; i++) { v := 4 * i;  s := s + v; ) 
s := 0;  for (i=0; i<n; i++) { v := v + 4;  s := s + v; ) 

 
 

Induction variable elimination 
If there are multiple induction variables in a loop, can eliminate 

the ones which are used only in the test condition 

Example 

s := 0;  for (i=0; i<n; i++) { s := 4 * i; … }   -- i is not 

referenced in loop 

 s := 0;  e := 4*n; while (s < e) { s := s + 4; } 
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Code Optimization Techniques 
Loop unrolling 

Execute loop body multiple times at each iteration 

Get rid of the conditional branches, if possible 

Allow optimization to cross multiple iterations of the loop 

Especially for parallel instruction execution 

Space time tradeoff 

Increase in code size, reduce some instructions 

 

Loop peeling 
Similar to unrolling 

But unroll the first and/or last few iterations 
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Code Optimization Techniques 
Loop fusion 

Example 
for i=1 to N do 
 A[i] = B[i] + 1 
endfor 
for i=1 to N do 
 C[i] = A[i] / 2 
endfor 
for i=1 to N do 
 D[i] = 1 / C[i+1] 
endfor 

 

Before Loop Fusion 

for i=1 to N do 

 A[i] = B[i] + 1 

 C[i] = A[i] / 2 

 D[i] = 1 / C[i+1] 

endfor 

 

 Is this correct? 

 Actually, cannot fuse 

 the third loop 
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Principle sources of optimization 

• Local optimization: within a basic block 

• Global optimization: otherwise 

• Mixed 

3 
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PRINCIPLE SOURCES OF  

OPTIMIZATION 

• Function Preserving Transformations : 

i) Common Subexpression Elimination  

ii)Copy Propogation 

iii)Dead – code Elimination  

iv)Constant folding 

v)Loop Optimization : Code Motion, Strength  

Reduction, Induction Variable Elimination 

4 
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Classic Examples of Local and  

Global Code Optimizations 
• Local 

– Constant folding 

– Constant combining 

– Strength reduction 

– Constant propagation 

– Common subexpression  

elimination 

– Backward copy propagation 

• Global 

– Dead code elimination 

– Constant propagation 

– Forward copy propagation 

– Common subexpression 

elimination 

– Code motion 

– Loop strength reduction 

– Induction variable  

elimination 
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Local: Constant Folding 

r7 = 4 + 1 

r5 = 2 * r4  

r6 = r5 * 2 

src2(X) = 1 

src1(X) = 4 

• Goal: eliminate  

unnecessary  

operations 

• Rules: 

1. X is an arithmetic  

operation 

2. If src1(X) and src2(X)  

are constant, then  

change X by applying  

the operation 
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Local: Constant Combining 

r7 = 5 

r5 = 2 * r4  

r6 = r5 * 2 

r6 = r4 * 4 

• Goal: eliminate 
unnecessary operations 

– First operation often  
becomes dead after  
constant combining 

• Rules: 

1. Operations X and Y in  
same basic block 

2. X and Y have at least one  
literal src 

3. Y uses dest(X) 

4. None of the srcs of X have  
defs between X and Y  
(excluding Y) 
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Local: Strength Reduction 

r7 = 5 

r5 = 2 * r4  

r6 = r4 * 4 

r6 = r4 << 2 

r5 = r4 + r4 

• Goal: replace  
expensive operations  
with cheaper ones 

• Rules (common): 

1. X is an multiplication  
operation where  
src1(X) or src2(X) is a  
const 2k integer literal 

2. Change X by using 
shift operation 

3. For k=1 can use add 
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Local: Constant Propagation 

r1 = 5 

r2 = _x  

r3 = 7 

r4 = r4 + r1  

r1 = r1 + r2  

r1 = r1 + 1  

r3 = 12 

r8 = r1 - r2  

r9 = r3 + r5  

r3 = r2 + 1 

r7 = r3 - r1  

M[r7] = 0 

• Goal: replace register  
uses with literals  
(constants) in a single  
basic block 

• Rules: 
1. Operation X is a move to  

register with src1(X) literal 

2. Operation Y uses dest(X) 

3. There is no def of dest(X)  
between X and Y  
(excluding defs at X and Y) 

4. Replace dest(X) in Y with  
src1(X) 

r8 = 5 + _x + 1 - _x  

r9 = 12 + r5 

r3 = _x + 1 

r4 = r4 + 5 

r1 = 5 + _x 

r1 = 5 + _x + 1 

r7 = _x + 1 - 5 - _x - 1 
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Local: Common Subexpression  

Elimination (CSE) 
• Goal: eliminate re- 

computations of an expression 

– More efficient code 

– Resulting moves can get copy  
propagated (see later) 

• Rules: 

1. Operations X and Y have the  
same opcode and Y follows X 

2. src(X) = src(Y) for all srcs 

3. For all srcs, no def of a src  
between X and Y (excluding  
Y) 

4. No def of dest(X) between X  
and Y (excluding X and Y) 

5. Replace Y with move dest(Y) 

= dest(X) 

r1 = r2 + r3 

r4 = r4 + 1 

r1 = 6 

r6 = r2 + r3 

r2 = r1 - 1 

r5 = r4 + 1 

r7 = r2 + r3 

r5 = r1 - 1 r5 = r2 
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Local: Backward Copy  

Propagation 
r1 = r8 + r9  

r2 = r9 + r1  

r4 = r2 

r6 = r2 + 1 

r9 = r1  

r7 = r6 

r5 = r7 + 1 

r4 = 0 

r8 = r2 + r7 

• Goal: propagate LHS of 

moves backward 

– Eliminates useless moves 

• Rules (dataflow required) 
1. X and Y in same block 

2. Y is a move to register 

3. dest(X) is a register that is not live  
out of the block 

4. Y uses dest(X) 

5. dest(Y) not used or defined  
between X and Y (excluding X  
and Y) 

6. No uses of dest(X) after the first  
redef of dest(Y) 

7. Replace src(Y) on path from X to  
Y with dest(X) and remove Y 

r7 = r2 + 1 

r6 not live 

remove r7 = r6 
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Global: Dead Code Elimination 

r4 = r4 + 1 

r7 = r1 * r4 

r3 = r3 + 1 r2 = 0 

r3 = r2 + r1 

M[r1] = r3 

r1 = 3 

r2 = 10 
• Goal: eliminate any operation 

who’s result is never used 

• Rules (dataflow required) 

1. X is an operation with no use  
in def-use (DU) chain, i.e.  
dest(X) is not live 

2. Delete X if removable (not a  
mem store or branch) 

• Rules too simple! 

– Misses deletion of r4, even  
after deleting r7, since r4 is  

live in loop 

– Better is to trace UD chains  
backwards from “critical”  
operations 

r7 not live 
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Global: Constant Propagation 

r5 = 2 

r7 = r1 * r5 

r3 = r3 + r5 r2 = 0 

r3 = r2 + r1  

r6 = r7 * r4 

M[r1] = r3 

r1 = 4 

r2 = 10 
• Goal: globally replace 

register uses with literals 

• Rules (dataflow required) 

1. X is a move to a register  
with src1(X) literal 

2. Y uses dest(X) 

3. dest(X) has only one def at  
X for use-def (UD) chains  
to Y 

4. Replace dest(X) in Y with  
src1(X) 

r7 = 8 

r3 = r3 + 2 

M[4] = r3 

r3 = r2 + 4 

r6 = 8 * r4 
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Global: Forward Copy  

Propagation 

r1 = r2  

r3 = r4 

r6 = r3 + 1 r2 = 0 

r5 = r2 + r3 

• Goal: globally propagate 

RHS of moves forward 

– Reduces dependence chain 

– May be possible to eliminate  
moves 

• Rules (dataflow required) 
1. X is a move with src1(X)  

register 

2. Y uses dest(X) 

3. dest(X) has only one def at X 

for UD chains to Y 

4. src1(X) has no def on any path  
from X to Y 

5. Replace dest(X) in Y with  
src1(X) 

r6 = r4 + 1 

r5 = r2 + r4 
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Global: Common Subexpression  

Elimination (CSE) 

r3 = r4 / r7 

r2 = r2 + 1  

r3 = r3 + 1 
r1 = r3 * 7 

r5 = r2 * r6  

r8 = r4 / r7 

r9 = r3 * 7 

r1 = r2 * r6 • Goal: eliminate  
recomputations of an  
expression 

• Rules: 
1. X and Y have the same 

opcode and X dominates Y 

2. src(X) = src(Y) for all srcs 

3. For all srcs, no def of a src on  
any path between X and Y  
(excluding Y) 

4. Insert rx = dest(X)  
immediately after X for new  
register rx 

5. Replace Y with move dest(Y) 

= rx 

r8 = r10 

r10 = r3 
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Global: Code Motion 

r4 = M[r5] 

r7 = r4 * 3 

r8 = r2 + 1 

r7 = r8 * r4 
r3 = r2 + 1 

r1 = r1 + r7 

M[r1] = r3 

r1 = 0 

header 

• Goal: move loop-invariant 

computations to preheader 

• Rules: 

1. Operation X in block that  
dominates all exit blocks 

2. X is the only operation to 

modify dest(X) in loop body 

3. All srcs of X have no defs in  
any of the basic blocks in the  
loop body 

4. Move X to end of preheader 

5. Note 1: if one src of X is a  
memory load, need to check  
for stores in loop body 

6. Note 2: X must be movable 

and not cause exceptions 

preheader 

r4 = M[r5] 
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Global: Loop Strength Reduction 

i := 0  

t1 := n-2 

t2 := 4*i  

A[t2] := 0 

i := i+1 

if i < t1 goto B2 

B1: 

B2: 

B3: 

i := 0  

t1 := n-2 

t2 := 4*i 

A[t2] := 0 

i := i+1  

t2 := t2+4 

if i < t1 goto B2 

B1: 

B2: 

B3: 

Replace expensive computations with induction variables 
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Global: Induction Variable  

Elimination 

i := 0  

t1 := n-2 

t2 := 4*i 

A[t2] := 0 

i := i+1  

t2 := t2+4 

if i<t1 goto B2 

B1: 

B2: 

B3: 

t1 := 4*n  

t1 := t1-8 

t2 := 4*i 

A[t2] := 0 

t2 := t2+4 

if t2<t1 goto B2 

B1: 

B2: 

B3: 

Replace induction variable in expressions with another 
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The Code Optimizer 

• Control flow analysis 

• Data-flow analysis 

• Transformations 

Front  

end 

Code  

generator 

Code  

optimizer 

Control- 

flow  

analysis 

Data- 

flow  

analysis 

Transfor-  

mations 
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Determining Loops in Flow  

Graphs: Dominators 

• Dominators: d dom n 

– Node d of a CFG dominates node n if every path from  

the initial node of the CFG to n goes through d 

– The loop entry dominates all nodes in the loop 

• The immediate dominator m of a node n is the last  

dominator on the path from the initial node to n 

– If d  n and d dom n then d dom m 

3/18/2019 PROF. ANAND GHARU 



21 

Dominator Trees 

1 

2 

3 

4 

5 6 

7 

8 

9 10 

1 

2 3 

4 

5 6 7 

8 

9 10 

CFG Dominator tree 
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Natural Loops 

• A back edge is is an edge a  b whose head b 

dominates its tail a 

• Given a back edge n  d 

– The natural loop consists of d plus the nodes that can  
reach n without going through d 

– The loop header is node d 

• Unless two loops have the same header, they are  
disjoint or one is nested within the other 

– A nested loop is an inner loop if it contains no other  
loops 
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Natural Inner Loops Example 

1 
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5 6 
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8 

9 10 
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2 3 
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5 6 7 

8 

9 10 

CFG Dominator tree 

Natural loop  

for 7 dom 10 

Natural loop  

for 3 dom 4 

Natural loop  

for 4 dom 7 
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Natural Outer Loops Example 

2 

3 

4 

5 6 

7 

8 

9 10 

2 3 

4 

5 6 7 

8 

9 10 

CFG Dominator tree 

Natural loop 
for 1 dom 9 

1 1 

Natural loop  

for 3 dom 8 
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Pre-Headers 

• To facilitate loop transformations, a  

compiler often adds a preheader to a loop 

• Code motion, strength reduction, and other  

loop transformations populate the preheader 

Header Header 

Preheader 
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Data Flow Analysis 

Data flow analysis is used to collect information  

about the flow of data values across basic blocks. 

•Dominator analysis collected global information regarding the  

program’s structure 

•For performing global code optimizations global information  

must be collected regarding values of program variables. 

– Local optimizations involve statements from same basic block 

– Global optimizations involve statements from different basic blocks 

 data flow analysis is performed to collect global information that 

drives  global optimizations 
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Local and Global  

Optimization 
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Applications of Data Flow  

Analysis 
• Applicability of code optimizations 

• Symbolic debugging of code 

• Static error checking 

• Type inference 

• ……. 

29 
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Global Data Flow Analysis 
• These Analyze following properties : 

1. Reaching Definitions : Constant Propagation, Dead code 

Elimination, copy propogation 

2. Available Expressions : Common Subexpression Elimination 

3. Live Variable Analysis : Register Allocation 

4. Very Busy Expressions : Dead code Elimination , Register 

Allocation 

30 
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Data Flow Equation 

Data Flow Analysis is done by the equation : 

 
Out[S] = gen[S] U (in[S] – kill[S]) 

 
i.e information at the end is either generated  

within the statement or at the beginning  

and not killed as control flows through the  

statement 

31 

3/18/2019 PROF. ANAND GHARU 



1. Reaching Definitions 
Definition d of variable v: a statement d that assigns a value  

to v. 

Use of variable v: reference to value of v in an expression  

evaluation. 

 
Definition d of variable v reaches a point p if there exists a  

path from immediately after d to p such that definition d is  

not killed along the path. 

Definition d is killed along a path between two points if there  

exists an assignment to variable v along the path. 

32 
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Example 
33 

d reaches u along path2 & d does not reach u along path1 

Since there exists a path from d to u along which d is not  
killed (i.e., path2), d reaches u. 
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Computing Reaching Definitions 

At each program point p, we compute the set of  

definitions that reach point p. 

Reaching definitions are computed by solving a  

system of equations (data flow equations). 

34 

d1: X=… 

IN[B] 

OUT[B] 

GEN[B] ={d1} 
KILL[B]={d2,d3} 

d2: X=… d3: X=… 
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GEN[B]: Definitions within B that reach the end of B. 
KILL[B]: Definitions that never reach the end of B due  

to redefinitions of variables in B. 

Data Flow Equations 
IN[B]: Definitions that reach B’s entry.  
OUT[B]: Definitions that reach B’s exit. 
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Reaching Definitions Contd. 
• Forward problem – information flows  

forward in the direction of edges. 

• May problem – there is a path along which  

definition reaches a point but it does not  

always reach the point. 

Therefore in a May problem the meet  

operator is the Union operator. 

36 
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Applications of Reaching  

Definitions 
• Constant  

Propagation/folding 

• Copy Propagation 

37 
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2. Available Expressions 
An expression is generated at a point if it is computed at that  

point. 

An expression is killed by redefinitions of operands of the  

expression. 

 
An expression A+B is available at a point if every path from  

the start node to the point evaluates A+B and after the last  

evaluation of A+B on each path there is no redefinition of  

either A or B (i.e., A+B is not killed). 

38 
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Available Expressions 

Available expressions problem computes: at each program  

point the set of expressions available at that point. 

39 
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GEN[B]: Expressions computed within B that are  
available at the end of B. 

KILL[B]: Expressions whose operands are redefined in B. 

Data Flow Equations 
IN[B]: Expressions available at B’s entry.  
OUT[B]: Expressions available at B’s exit. 

3/18/2019 PROF. ANAND GHARU 



Available Expressions Contd. 
• Forward problem – information flows  

forward in the direction of edges. 

• Must problem – expression is definitely  

available at a point along all paths. 

Therefore in a Must problem the meet  

operator is the Intersection operator. 

41 
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Applications of Available  

Expressions 

• Common Subexpression Elimination 

42 
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3. Live Variable Analysis 
43 

A path is X-clear is it contains no definition of X. 

A variable X is live at point p if there exists a X-clear path  

from p to a use of X; otherwise X is dead at p. 

 
 

Live Variable Analysis  
Computes: 

At each program  
point p identify the  
set of variables that  
are live at p. 
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GEN[B]: Variables that are used in B prior to their  
definition in B. 

KILL[B]: Variables definitely assigned value in B before  
any use of that variable in B. 

Data Flow Equations 
IN[B]: Variables live at B’s entry.  
OUT[B]: Variables live at B’s exit. 
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Live Variables Contd. 

• Backward problem – information flows  

backward in reverse of the direction of  

edges. 

• May problem – there exists a path along  

which a use is encountered. 

Therefore in a May problem the meet  

operator is the Union operator. 

45 
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Applications of Live Variables 

• Register Allocation 

 
• Dead Code  

Elimination 

• Code Motion  

Out of Loops 

46 
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4. Very Busy Expressions 
47 

A expression A+B is very busy at point p if for all paths  

starting at p and ending at the end of the program, an  

evaluation of A+B appears before any definition of A or B. 

 

Application: 
Code Size Reduction 

Compute for each program point the set of  
very busy expressions at the point. 
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Data Flow Equations 

48 

GEN[B]: Expression computed in B and variables used in  
the expression are not redefined in B prior to  
expression’s evaluation in B. 

KILL[B]: Expressions that use variables that are  
redefined in B. 

IN[B]: Expressions very busy at B’s entry.  
OUT[B]: Expressions very busy at B’s exit. 
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Very Busy Expressions Contd. 

• Backward problem – information flows  

backward in reverse of the direction of  

edges. 

• Must problem – expressions must be  

computed along all paths. 

Therefore in a Must problem the meet  

operator is the Intersection operator. 

49 
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Summary 

May/Union Must/Intersecti 
on 

Forward Reaching  
Definitions 

Available  
Expressions 

Backward Live  
Variables 

Very Busy  
Expressions 

50 
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Reaching Definitions 

S d: a:=b+c 

Then, the data-flow equations for S are: 

gen[S]  

kill[S]  

out[S] 

= {d} 

= Da - {d} 

= gen[S]  (in[S] - kill[S]) 

where Da = all definitions of a in the region of code 

is of the form 
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Reaching Definitions 

S 

gen[S]  

kill[S]  

in[S1] 

in[S2] 

out[S] 

= gen[S2]  (gen[S1] - kill[S2]) 
= kill[S2]  (kill[S1] - gen[S2]) 

= in[S] 

= out[S1] 

= out[S2] 

is of the form 

S2 

S1 
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Reaching Definitions 

S 

gen[S]  

kill[S]  

in[S1] 

in[S2] 

out[S] 

= gen[S1]  gen[S2] 
= kill[S1]  kill[S2] 

= in[S] 

= in[S] 

= out[S1]  out[S2] 

is of the form 

S2 S1 
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Reaching Definitions 

S 

gen[S]  

kill[S]  

in[S1] 

out[S] 

= gen[S1] 

= kill[S1] 

= in[S]  gen[S1] 

= out[S1] 

is of the form 

S1 
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Example Reaching Definitions 
d1: i := m-1; 

d2: j := n; 

d3: a := u1;  

do 

d4: i := i+1; 

d5: j := j-1; 

if e1 then 

d6:  a := u2  

else 

d7:  i := u3  

while e2 

; 

gen={d1} 

kill={d4, d7} 
d1 

gen={d2} 

kill={d5} 
d2 

1 2 

kill={d4,d5,d7} 

; 

d3 

gen={d ,d } gen={d } 3 

kill={d6} 

gen={d1,d2,d3}  

kill={d4,d5,d6,d7} 

; gen={d3,d4,d5,d6,d7} 

kill={d1,d2} 

do 

; 

gen={d4}  

kill={d1, d7} 
d4 

; 

gen={d5}  

kill={d2} 
d5 

if 

e1 

d6 d7 
e1 gen={d6}  

kill={d3} 

gen={d7}  

kill={d1,d4} 

gen={d4,d5}  

kill={d1,d2,d7} 

gen={d4,d5,d6,d7} 

kill={d1,d2} 

gen={d4,d5,d6,d7} 

1 2 kill={d ,d } 

gen={d6,d7}  

kill={} 
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Using Bit-Vectors to Compute  

Reaching Definitions 
d1: i := m-1; 

d2: j := n; 

d3: a := u1;  

do 

d4: i := i+1; 

d5: j := j-1; 

if e1 then 

d6:  a := u2  

else 

d7:  i := u3  

while e2 

; 

d1 d2 

; 

d3 

; 
0011111 

1100000 

do 

; 

d4 

; 

d5 

if 

e1 

d6 d7 
e1 

1110000 

0001111 

1100000 

0001101 

1000000 

0001001 

0100000 

0000100 

0010000 

0000010 

0001111 

1100000 

0001111 

1100000 

0001100 

1100001 

0001000 

1000001 

0000100 

0100000 

0000010 

0010000 

0000001 

1001000 

0000011 

0000000 
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Computation of in and out sets …for  

reaching definitions 

for all basic blocks BB  

for all basic blocks BB  

change = true 

while (change) do  

change = false 

for each basic block BB, do 

old_out = out(BB) 

in(BB) = U(out(Y)) for all predecessors Y of BB 

out(BB) = gen(BB) + (in(BB) – kill(BB))  

if (old_out != out(BB)) then change = true 

endfor  

endfor 

in(BB) =  

out(BB) = gen(BB) 
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Example Reaching Definitions 
d1: i := m-1; 

d2: j := n; 

d3: a := u1;  

do 

d4: i := i+1; 

d5: j := j-1; 

if e1 then 

d6:  a := u2  

else 

d7:  i := u3  

while e2 

d1: i := m-1; 

d2: j := n; 

d3: a := u1; 

d4: i := i+1; 

5 
d : j := j-1; 

d7: i := u3 d6: a := u2 
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Block 

s 

Initial Pass1 Pass2 

In Out In Out In Out 

B1 0000000 1110000 0000000 1110000 0000000 1110000 

B2 0000000 0001100 1110011 0011110 1111111 0011110 

B3 0000000 0000010 0011110 0001110 0011110 0001110 

B4 0000000 0000001 0011110 0010111 0011110 0010111 

59 

in(BB) = U(out(Y)) for all predecessors Y of BB 

out(BB) = gen(BB) U (in(BB) – kill(BB)) 

Since out[B] of pass1 = out[B] of pass2 ….We Stop 
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Pass2 

In Out 

0000000 1110000 

1111111 0011110 

0011110 0001110 

0011110 0010111 

60 

Thus we can finally say that  

at the end of block 4 the  

final definitions reaching  

are 

d3, d5, d6, d7 
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Computation of in and out sets …for  

available expressions 

endfor 

in(B1) =  

out(B1) = gen(B1) 

for B ≠ B1 do out[B] := U - kill[B]  

change = true 

while (change) do  

change = false 

for B ≠ B1, do begin 

in(B) = ∩ (out(P)) for all predecessors P of BB 

old_out = out(B) 

out(B) = gen(B) U (in(B) – kill(B)) 

if (old_out != out(BB)) then change = true  

endfor 
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Live Variable (Liveness) Analysis 

• Liveness: For each point p in a program and each variable  
y, determine whether y can be used before being redefined,  
starting at p. 

 
• Attributes 

– use = set of variable used in the B prior to its definition 

– def = set of variables defined in B prior to any use of the variable 

– in = set of variables that are live at the entry point of a B 

– out = set of variables that are live at the exit point of a B 
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Live Variable (Liveness) Analysis 

– 1st Equation: a var is live, coming in the block, if either 
•it is used before redefinition in B  

or 

•it is live coming out of B and is not redefined in B 

– 2nd Equation: a var is live coming out of B, iff it is live  
coming in to one of its successors. 

(out[B]  def [B]) 

in[S ] 

• Data flow equations: 

in[B]  use[B]  

out[B]  

S succ( B) 
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Example: Liveness 

r1 = r2 + r3 

r6 = r4 – r5 

r4 = 4 

r6 = 8 

r6 = r2 + r3  

r7 = r4 – r5 

r2, r3, r4, r5 are all live as they 

are consumed later, r6 is dead  

as it is redefined later 

r4 is dead, as it is redefined.  

So is r6. r2, r3, r5 are live 

What does this mean?  

r6 = r4 – r5 is useless, 

it produces a dead value !! 

Get rid of it! 

64 
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