
PUNE VIDYARTHI GRIHA’s

COLLEGE OF ENGINEERING, NASHIK.

“ CODE GENERATION ”

3/18/2019

PREPARED BY :

PROF. ANAND N. GHARU

ASSISTANT PROFESSOR

COMPUTER DEPARTMENT

SUBJECT – COMPILER (BE COMPUTER SPPU-2019)
PROF. ANAND GHARU

CONTENTS :

0 Code Generation - Issues in code generation, basic blocks, flow

graphs, DAG representation of basic blocks, Target machine

description, peephole optimization, Register allocation and

Assignment, Simple code generator, Code generation from labeled

tree, Concept of code generator.

3/18/2019 PROF. ANAND GHARU

Outline

• Code Generation Issues

• Target Machine Description

• Basic Blocks and Flow Graphs

• Optimizations of Basic Blocks

• A Simple Code Generator

• Peephole optimization

• Register allocation and assignment

• Instruction selection by tree rewriting

3/18/2019 PROF. ANAND GHARU

INTRODUCTION

• The final phase of a compiler is code generator

• It receives an intermediate representation (IR) with
supplementary information in symbol table

• Produces a semantically equivalent target program

• Code generator main tasks:
– Instruction selection

– Register allocation and assignment

– Instruction ordering

Front End
Code

Optimizer
Code

Generator

3/18/2019 PROF. ANAND GHARU

Code Generation

Reference : Aho Ullman, Sethi

• Code produced by compiler must be correct
– Source-to-target program transformation should

be semantics preserving

• Code produced by compiler should be of high
quality
– Effective use of target machine resources

– Heuristic techniques should be used to generate
good but suboptimal code, because generating
optimal code is undecidable

• code generator should run efficiently

3/18/2019 PROF. ANAND GHARU

Issues in the design of code generator

Reference : Aho Ullman, Sethi

• Input: Intermediate representation with symbol table assume that

input has been validated by the front end

• Target programs :

The back-end code generator of a compiler may generate different

forms of code, depending on the requirements:

– Absolute machine code (executable code)

– Relocatable machine code (object files for linker)

– Assembly language (facilitates debugging)

– Byte code forms for interpreters (e.g. JVM)

3/18/2019 PROF. ANAND GHARU

Issues in the design of code generator

Reference : Aho Ullman, Sethi

• Target Machine:

Implementing code generation requires thorough

understanding of the target machine architecture and its

instruction set

3/18/2019 PROF. ANAND GHARU

Issues in the design of code generator

a:=a+1

Instruction Selection:

• Instruction selection is important to obtain efficient
code

MOV a,R0

ADD #1,R0

MOV R0,a

Cost = 6

ADD #1,a

Cost = 3

INC a

Cost = 2

Better

Reference : Aho Ullman, Sethi

Best

3/18/2019 PROF. ANAND GHARU

Issues in the design of code generator

Instruction Selection

Reference : Aho Ullman, Sethi

• Suppose we translate a:=b+c into
MOV b,R0

ADD c,R0

MOV R0,a

• Assuming addresses of a, b, and c are stored in R0,
R1, and R2

MOV *R1,*R0

ADD *R2,*R0

• Assuming R1 and R2 contain values of b and c
ADD R2,R1

MOV R1,a

3/18/2019 PROF. ANAND GHARU

Issues in the design of code generator

Instruction Selection
• Suppose we translate three-address code

x:=y+z
to: MOV y,R0

ADD z,R0
MOV R0,x

• Then, we translate
a:=b+c d:=a+e

to: MOV a,R0
ADD b,R0
MOV R0,a
MOV a,R0
ADD e,R0
MOV R0,d

Redundant

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Issues in the design of code generator

Register Allocation and Assignment

Reference : Aho Ullman, Sethi

• Efficient utilization of the limited set of registers is

important to generate good code

• Registers are assigned by

– Register allocation to select the set of variables that will

reside in registers at a point in the code

– Register assignment to pick the specific register that a

variable will reside in

• Finding an optimal register assignment in general is

NP-complete

3/18/2019 PROF. ANAND GHARU

Issues in the design of code generator

: Register Allocation and Assignment :

Example

t:=a*b

t:=t+a

t:=t/d

MOV a,R1

MUL b,R1

ADD a,R1

DIV d,R1

MOV R1,t

t:=a*b

t:=t+a

t:=t/d

MOV a,R0

MOV R0,R1

MUL b,R1

ADD R0,R1

DIV d,R1

MOV R1,t

Reference : Aho Ullman, Sethi

{ R1=t } { R0=a, R1=t }

3/18/2019 PROF. ANAND GHARU

Issues in the design of code generator

Choice of Evaluation Order

• When instructions are independent, their evaluation
order can be changed

a+b-(c+d)*e

MOV a,R0

ADD b,R0

MOV R0,t1

MOV c,R1

ADD d,R1

MOV e,R0

MUL R1,R0

MOV t1,R1

SUB R0,R1

MOV R1,t4

t2:=c+d

t3:=e*t2

t1:=a+b

MOV c,R0

ADD d,R0

MOV e,R1

MUL R0,R1

MOV a,R0

ADD b,R0

SUB R1,R0

t1:=a+b

t2:=c+d

t3:=e*t2

t4:=t1-t3

reorder

Reference : Aho Ullman, Sethi 11
t4:=t1-t3 MOV R0,t4

3/18/2019 PROF. ANAND GHARU

A simple target machine model

• Load operations: LD r,x and LD r1, r2

• Store operations: ST x,r

• Computation operations: OP dst, src1, src2

• Unconditional jumps: BR L

• Conditional jumps: Bcond r, L like BLTZ r, L

3/18/2019 PROF. ANAND GHARU

Addressing Modes

• variable name: x

• indexed address: a(r) like LD R1, a(R2) means

R1=contents(a+contents(R2))

• integer indexed by a register : like LD R1, 100(R2)

• Indirect addressing mode: *r and *100(r)

• immediate constant addressing mode: like LD R1,

#100

3/18/2019 PROF. ANAND GHARU

b = a [i]

LD R1, i //R1 = i

MUL R1, R1, 8 //R1 = Rl * 8

LD R2, a(R1)

//R2=contents(a+contents(R1))

ST b, R2 //b = R2

3/18/2019 PROF. ANAND GHARU

a[j] = c

LD R1, c //R1 = c

LD R2, j // R2 = j

MUL R2, R2, 8 //R2 = R2 * 8

ST a(R2), R1

//contents(a+contents(R2))=R1

3/18/2019 PROF. ANAND GHARU

x=*p

LD R1, p //R1 = p

LD R2, 0(R1) // R2 =

contents(0+contents(R1))

ST x, R2 / / x=R2

3/18/2019 PROF. ANAND GHARU

conditional-jump three-address instruction

If x<y goto L

LD R1, x

LD R2, y

SUB R1, R1, R2

BLTZ R1, M

/ / R1 = x

/ / R2 = y

/ / R1 = R1 - R2

/ / i f R1 < 0 jump t o M

3/18/2019 PROF. ANAND GHARU

costs associated with the addressing modes

• LD R0, R1

• LD R0, M

• LD R1, *100(R2)

cost = 1

cost = 2

cost = 3

3/18/2019 PROF. ANAND GHARU

Addresses in the Target Code

• A statically determined area Code

• A statically determined data area Static

• A dynamically managed area Heap

• A dynamically managed area Stack

3/18/2019 PROF. ANAND GHARU

Three-address statements for

procedure calls and returns

• call callee

• Return

• Halt

• action

3/18/2019 PROF. ANAND GHARU

Target program for a sample call and return

3/18/2019 PROF. ANAND GHARU

Stack Allocation

Return to caller

in Callee:

in caller:

BR *0(SP)

SUB SP, SP, #caller.recordsize

Branch to called procedure

3/18/2019 PROF. ANAND GHARU

Target code for stack allocation

3/18/2019 PROF. ANAND GHARU

24

Flow Graphs

• A flow graph is a graphical depiction of a

sequence of instructions with control flow

edges

• A flow graph can be defined at the

intermediate code level or target code level

MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

MOV 0,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1
Reference : Aho Ullman, Sethi

L2: JMPNZ R1,L1 3/18/2019 PROF. ANAND GHARU

Basic Blocks

• A basic block is a sequence of consecutive

instructions with exactly one entry point and

one exit point (with natural flow or a branch

instruction)

MOV 1,R0

MOV n,R1

JMP L2 MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0
L1: MUL 2,R0

SUB 1,R1
SUB 1,R1

L2: JMPNZ R1,L1
L2: JMPNZ R1,L1

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Basic Blocks and Control Flow Graphs

• A control flow graph (CFG) is a directed graph

with basic blocks Bi as vertices and with edges

BiBj iff Bj can be executed immediately after

Bi

MOV 1,R0

MOV n,R1

JMP L2 MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0
L1: MUL 2,R0

SUB 1,R1
SUB 1,R1

L2: JMPNZ R1,L1
L2: JMPNZ R1,L1

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Successor and Predecessor Blocks

• Suppose the CFG has an edge B1B2

– Basic block B1 is a predecessor of B2

– Basic block B2 is a successor of B1

MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Partition Algorithm for Basic
Blocks

Reference : Aho Ullman, Sethi

Input: A sequence of three-address statements
Output: A list of basic blocks with each three-address statement

in exactly one block

1. Determine the set of leaders, the first statements of basic
blocks
a) The first statement is the leader
b) Any statement that is the target of a goto is a leader
c) Any statement that immediately follows a goto is a leader

2. For each leader, its basic block consist of the leader and all
statements up to but not including the next leader or the end
of the program

3/18/2019 PROF. ANAND GHARU

Intermediate code to set a 10*10 matrix to an
identity matrix

1) i = 1
2) j = 1
3) t1 = i * 10
4) t2 = t1 + j
5) t3 = t2 * 8
6) a[t3] = 0.0
7) j =j + 1
8) if j<=10 goto (3)
9) i = i + 1
10) if i<=10 goto (2)
11) i = 1
12) t4 = i * 10
13)t5 = t4 + i
14) t6 = t5 * 8
15) a[t6] = 1.0
16) i = i + 1
17) if i<=10 goto (12)

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Flow graph based on Basic
Blocks

Entry

i = 1

j = 1

t1 = i * 10

t2 = t1 + j

t3 = t2 * 8

a[t3] = 0.0

j = j + 1

if j< =1 0 goto B3

t1 = i * 10

t2 = t1 + i

t3 = t2 * 8

a[t3] = 1.0

i = i + 1

i = i + 1
If I < = 10 goto B2

i = 1

B1

B2

B3

B4

B5

B6

30 if i< =1 0RegfoerteonBce6: Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Intermediate code to set a 10*10 matrix to an
identity matrix

Reference : Aho Ullman, Sethi

1) i = 1
2) j = 1
3) t1 = i * 10
4) t2 = t1 + j
5) t3 = t2 * 8
6) t4 = i * 10
7) t5 = t4 + j
8) t6 = t5 * 8
9) t7 = i * 10
10)t8 = t7 + j
11)t9 = t8 * 8
12) c[t9] = a[t3] + b [t6]
13)j =j + 1
14)if j<=n goto (3)
15)i = i + 1
16) if i<=n goto (2)

Generate TAC and Partition below code
into basic blocks

for i=1 to n
for j=1 to n

c[i,j] = a[i,j] + b[i,j]

3/18/2019 PROF. ANAND GHARU

Flow graph based on Basic
Blocks

Entry

i = 1

j = 1

1) t1 = i * 10
2) t2 = t1 + j
3) t3 = t2 * 8
4) t4 = i * 10
5) t5 = t4 + j
6) t6 = t5 * 8
7) t7 = i * 10
8) t8 = t7 + j
9) t9 = t8 * 8
10) c[t9] = a[t3] + b [t6]
11) j =j + 1
12) if j<=n goto B3

1) i = i + 1
2) if i<=n goto B2

B1

B2

B3

B4

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Loops

Reference : Aho Ullman, Sethi

• A loop is a collection of basic blocks, such that

– All blocks in the collection are strongly connected

– The collection has a unique entry, and the only

way to reach a block in the loop is through the

entry

3/18/2019 PROF. ANAND GHARU

Loops (Example)

MOV 1,R0

MOV n,R1

JMP L2

L1: MUL 2,R0

SUB 1,R1

L2: JMPNZ R1,L1

B1:

B2:

B3:

L3: ADD 2,R2

SUB 1,R0

JMPNZ R0,L3

B4:

Reference : Aho Ullman, Sethi

Strongly connected

components:

SCC={ {B2,B3}, {B4} }

Entries: B3, B4

3/18/2019 PROF. ANAND GHARU

Equivalence of Basic Blocks

• Two basic blocks are (semantically) equivalent

if they compute the same set of expressions

b := 0

t1 := a + b

t2 := c * t1

a := t2
a := c * a

b := 0

a := c*a

b := 0

a := c*a

b := 0

Blocks are equivalent, assuming t1 and t2 are dead:
no longer used (no longer live)

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Transformations on Basic Blocks

Reference : Aho Ullman, Sethi

• A code-improving transformation is a
 code optimization to improve speed or reduce code
size

• Global transformations are performed across basic
blocks

• Local transformations are only performed on single
basic blocks

• Transformations must be safe and preserve the
meaning of the code
– A local transformation is safe if the transformed basic

block is guaranteed to be equivalent to its original form

3/18/2019 PROF. ANAND GHARU

Transformations on Basic Blocks

Reference : Aho Ullman, Sethi

• Common Subexpression Elimination

• Dead Code Elimination

• Renaming Temporary Variables

• Interchange of Statements

• Algebraic Transformations

• Next-Use Computation

3/18/2019 PROF. ANAND GHARU

Common-Subexpression Elimination

a := b + c

b := a - d

c := b + c

d := a - d

a := b + c

b := a - d

c := b + c

d := b

t1 := b * c

t2 := a - t1

t3

t4

:=

:=

b * c

t2 + t3

t1 := b * c

t2

t4

:=

:=

a - t1

t2 + t1

• Remove redundant computations

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Dead Code Elimination

• Remove unused statements

b := a + 1

a := b + c

…

b := a + 1

…

Assuming a is dead (not used)

b := x + y

…

if true goto L2

Remove unreachable code

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Renaming Temporary Variables

• Temporary variables that are dead at the end

of a block can be safely renamed

t1 := b + c

t2 := a - t1

t1 := t1 * d

d := t2 + t1

t1 := b + c

t2 := a - t1

t3 := t1 * d

d := t2 + t3

Normal-form block

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Interchange of Statements

• Independent statements can be reordered

t1 := b + c

t2 := a - t1

t3 := t1 * d

d := t2 + t3

t1 := b + c

t3 := t1 * d

t2 := a - t1

d := t2 + t3

Note that normal-form blocks permit all

statement interchanges that are possible

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Algebraic Transformations

• Change arithmetic operations to transform

blocks to algebraic equivalent forms

t1 := a - a

t2 := b + t1

t3 := 2 * t2

t1 := 0

t2 := b

t3 := t2 << 1

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Next-Use

Reference : Aho Ullman, Sethi

• Next-use information is needed for dead-code

elimination and register assignment

• Next-use is computed by a backward scan of a basic

block and performing the following actions on

statement

i: x := y op z

– Add liveness/next-use info on x, y, and z to statement i

– Set x to “not live” and “no next use”

– Set y and z to “live” and the next uses of y and z to i

3/18/2019 PROF. ANAND GHARU

Example

Reference : Aho Ullman, Sethi

1: t1 = a * a

2: t2 = a * b

3: t3 = 2 * t2

4: t4 = t1 + t3

5: t5 = b * b

6: t6 = t4 + t5

7: X = t6

3/18/2019 PROF. ANAND GHARU

Example

Reference : Aho Ullman, Sethi

STATEMENT

7: no temporary is live

6: t6:use(7), t4 t5 not live

5: t5:use(6)

3: t3:use(4), t2 not live

2: t :use(3) 2

1: t1:use(4)

Symbol Table

t1

dead Use in 4

t2
dead Use in 3

t3

dead Use in 4

t4

dead Use in 6

t5 dead Use in 6

t6 dead Use in 7

1: t1 = a * a

2: t = a * b 2

3: t3 = 2 * t2

4 1 4: t = t + t 3 4: t4:use(6), t1 t3 not live
5: t5 = b * b

6: t = t + t 6 4 5

7: X = t 6

3/18/2019 PROF. ANAND GHARU

Example …

1 1: t = a * a

2: t = a * b 2

3: t2 = 2 * t2

4: t1 = t1 + t2

5: t2 = b * b

6: t1 = t1 + t2

7: X = t1

1

2

3

4

5

6

7

t1
t 2

t3

t4

t5

t6

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

A Code Generator

Reference : Aho Ullman, Sethi

• Generates target code for a sequence of three-
address statements using next-use information

• Uses new function getreg to assign registers to
variables

• Computed results are kept in registers as long as
possible, which means:
– Result is needed in another computation

– Register is kept up to a procedure call or end of block

• Checks if operands to three-address code are
available in registers

3/18/2019 PROF. ANAND GHARU

Code Generator : Register and Address

Descriptors

Reference : Aho Ullman, Sethi

• A register descriptor keeps track of what is currently
stored in a register at a particular point in the code, e.g.
a local variable, argument, global variable, etc.

MOV a,R0 “R0 contains a”

• An address descriptor keeps track of the location where

the current value of the name can be found at run time,
e.g. a register, stack location, memory address, etc.

MOV a,R0

MOV R0,R1 “a in R0 and R1”

3/18/2019 PROF. ANAND GHARU

The Code Generation Algorithm

Reference : Aho Ullman, Sethi

• For each statement x := y op z
1. Set location L = getreg(y, z)
2. If y L then generate

MOV y’,L
where y’ denotes one of the locations where the value
of y is available (choose register if possible)

3. Generate

OP z’,L
where z’ is one of the locations of z;
Update register/address descriptor of x to include L

4. If y and/or z has no next use and is stored in register,
update register descriptors to remove y and/or z

3/18/2019 PROF. ANAND GHARU

The getreg Algorithm

Reference : Aho Ullman, Sethi

• To compute getreg(y,z)
1. If y is stored in a register R and R only holds the value y,

and y has no next use, then return R;
Update address descriptor: value y no longer in R

2. Else, return a new empty register if available

3. Else, find an occupied register R;
Store contents (register spill) by generating

MOV R,M
for every M in address descriptor of y;
Return register R

4. Return a memory location

3/18/2019 PROF. ANAND GHARU

Example

Reference : Aho Ullman, Sethi

Stmt

t1=a-b

code

mov a,R0

reg desc

R0 contains t1

addr desc

t1 in R0

t2=a-c

sub b,R0

mov a,R1

R0 contains t1

t1 in R0

sub c,R1 R1 contains t2 t2 in R1

t3=t1+t2 add R1,R0 R0 contains t3

R1 contains t2

t3 in R0

t2 in R1

d=t3+t2
add R1,R0

mov R0,d

R0 contains d d in R0

d in R0 and

memory

3/18/2019 PROF. ANAND GHARU

Register Allocation and Assignment

Reference : Aho Ullman, Sethi

• Global Register Allocation

• Usage Counts

• Register Assignment for Outer Loops

• Register Allocation by Graph Coloring

3/18/2019 PROF. ANAND GHARU

Global register allocation

Reference : Aho Ullman, Sethi

• Previously explained algorithm does local (block based)
register allocation

• This resulted that all live variables be stored at the end
of block

• To save some of these stores and their corresponding
loads, we might arrange to assign registers to
frequently used variables and keep these registers
consistent across block boundaries (globally)

• Some options are:

– Keep values of variables used in loops inside registers

– Use graph coloring approach for more globally allocation

3/18/2019 PROF. ANAND GHARU

Usage counts

Reference : Aho Ullman, Sethi

• Usage Count means to determine that after the definition of x ,
how many subsequent uses of x exists in that block

• For the loops we can approximate the saving by register
allocation as: Sum over all blocks (B) in a loop (L)

– For each uses of x before any definition in the block we add one
unit of saving

– If x is live on exit from B and is assigned a value in B, then we add 2
units of saving

i.e

Σ (use(x,B) + 2 * live (x,B)
For all

Blocks B in L

• This is used for register assignment 3/18/2019 PROF. ANAND GHARU

Example : Flow graph of an inner loop

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Usage counts
• Now, compute Usage Count for each variable considering

each block.

• Use of a in B1 prior to its definition in B1 is 0

∴ use(a,B1) = 0

• ‘a’ is live on exit from B1 and is assigned a value in B1
∴ live(a,B1) = 1

• III larly, use(a,B2) = 1 , live(a,B2) = 0
use(a,B3) = 1 , live(a,B3) = 0

use(a,B4) = 0, live (a,B4) = 0

∴ usageCount(a) = (0+2*1) + (1+ 2* 0) + (1 + 2* 0) +(0 + 2* 0)

2 + 1 + 1+ 0 = 4

∴ usageCount(a) = 4 56 Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Usage counts
• Now, computing Usage Count for each variable, we

get

57

Bloc

k Variable
B1 B2 B3 B4 Total

a 0+2*1=2 1+2*0=1 1+2*0=1 0+2*0=0 4

b 2+2*0=2 0+2*0=0 0+2*1=2 0+2*1=2 6

c 1+2*0=1 0+2*0=0 1+2*0=1 1+2*0=1 3

d 1+2*1=3 1+2*0=1 1+2*0=1 1+2*0=1 6

e 0+2*1=2 0+2*0=0 0+2*1=2 0+2*0=0 4

f 1+2*0=1 0+2*1=2
Reference :
A

1+2*0=1
ho Ullman,
Seth

0+2*0=0
i

4 3/18/2019 PROF. ANAND GHARU

Usage counts
• Thus, we may select ‘a’,’b’,’d’ for registers , since

their usage count is largest.

• We can use ‘e’ or ‘f’ too instead of ‘a’

58 Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Code sequence using global register
assignment

MOV b, R1

MOV d, R2

MOV R1, R0

ADD c, R0

SUB R1,R2

MOV R0,R3

ADD f, R3

MOV R3,e

MOV R0, R1

SUB R2,R3

MOV R3, f

MOV R2, R1

ADD f, R1

MOV R0, R3

SUB c, R3

MOV R3, e

59

MOV R2 R1

ReferenceA: ADhDo Udllm, Ran2, Sethi

3/18/2019 PROF. ANAND GHARU

60

Global Register Allocation with Graph

Coloring

• When a register is needed but all available registers

are in use, the content of one of the used registers

must be stored (spilled) into a memory location to

free a register

• Graph coloring allocates registers and attempts to

minimize the cost of spills

• Build a conflict graph (interference graph)

• Find a k-coloring for the graph, with k the number of

registers

3/18/2019 PROF. ANAND GHARU

Register allocation by Graph coloring

• Two passes are used

– Target-machine instructions are selected as

though there are an infinite number of symbolic

registers

– Assign physical registers to symbolic ones

• Create a register-interference graph

• Nodes are symbolic registers and edges connects two

nodes if one is live at a point where the other is

defined.

• Use a graph coloring algorithm to assign registers.

3/18/2019 PROF. ANAND GHARU

62

Exampl
e

STATEMENT

t1 = 2
t2 = 4
t3 = t1 +t2
t4 = t1 + 1
t5 = t1 * t2
t6 = t4 * 2

1: x = 2

2: y = 4

3: w = x + y

4: z = x + 1

5: u = x * y

6: x = z * 2

Reference : Aho Ullman, Sethi

1

2

3

4

5

6

t1

t2

t3

t4

t5

t6

3/18/2019 PROF. ANAND GHARU

Register allocation by Graph coloring

• Construct Interference Graph

• Connect nodes with edges that interfere with

other

• Then, Color the interference graph such that

nodes connected to each other have different

colors

• Then Allocate variables having the same color

with same registers

3/18/2019 PROF. ANAND GHARU

Register allocation by Graph coloring

Now, consider three available registers R1, R2 and R3

t1 & t5 reside in R1 say red
t2 & t6 reside in R2 say green
t3 & t4 reside in R3 say blue

t1
t5

t2
t6

t4

t3

3/18/2019 PROF. ANAND GHARU

Peephole Optimization
• Target code often contains redundant

instructions and suboptimal constructs

• Examine a short sequence of target

instruction (peephole) and replace by a
shorter or faster sequence

• Peephole is a small moving window on the

target systems

3/18/2019 PROF. ANAND GHARU

Peephole optimization examples…

1. Redundant loads and stores

• Consider the code sequence

Move R0, a

Move a, R0

• Instruction 2 can always be removed if it

does not have a label.

3/18/2019 PROF. ANAND GHARU

Peephole optimization examples…
2. Unreachable code

• Consider following code sequence

#define debug 0
if (debug) {

print debugging info
}

this may be translated as
if debug = 1 goto L1
goto L2

L1: print debugging info
L2:

Eliminate jump over jumps
if debug <> 1 goto L2

print debugging information
L2:

3/18/2019 PROF. ANAND GHARU

Unreachable code example …
constant propagation

if 0 <> 1 goto L2

print debugging information

L2:

Evaluate boolean expression. Since if condition is always true the
code becomes

goto L2

print debugging information

L2:

The print statement is now unreachable. Therefore, the code
becomes

L2: 3/18/2019 PROF. ANAND GHARU

Peephole optimization examples…

3. Flow of control: replace jump sequences

goto L1

…

…

L1 : goto L2

4. Simplify algebraic expressions

remove x := x+0 or x:=x*1

goto L2
…
…

L1: goto L2

by

3/18/2019 PROF. ANAND GHARU

Peephole optimization examples…

5. Strength reduction

– Replace X^2 by X*X

– Replace multiplication by left shift

– Replace division by right shift

6. Use faster machine instructions

replace

by

Add #1,R

Inc R

3/18/2019 PROF. ANAND GHARU

71

Example

STATEMENT Finally Code generated is

t1 = 2
t2 = 4

MOV #2,R1
MOV#4, R2

t3 = t1 + t2 ADD R1, R2
MOV R2, R3

t4 = t1 + 1 ADD #1,R1

MOV R1, R3

t5 = t1 * t2 MUL R2,R1

t6 = t4 * 2 MUL#2, R3
MOV R3, R2

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

DAG representation of basic blocks

• Useful data structures for implementing transformations on basic blocks

• Gives a picture of how value computed by a statement is used in

subsequent statements

• Good way of determining common sub-expressions

• A dag for a basic block has following labels on the nodes

– leaves are labeled by unique identifiers, either variable names

 or constants

– interior nodes are labeled by an operator symbol

– nodes are also optionally given a sequence of identifiers for labels

3/18/2019 PROF. ANAND GHARU

DAG representation: example

4 3

1. t1 := 4 * i

2. t2 := a[t1]

3. t3 := 4 * i

4. t := b[t]

5. t5 := t2 * t4

6.t6 := prod + t5

7.prod := t6

8. t7 := i + 1

9. i := t7

10. if i <= 20 goto (1)

+

prod0 *

[] []

*

i0 4

b a

1

20

t1

t 4

t5

t6

(1)

<=

t3

t2

prod

+ t7 i

3/18/2019 PROF. ANAND GHARU

74

S1 = 4 * i

S = c(A) 2

S3 = S2[S1]

S4 = 4 * i

S = c(B) 5

S6 = S5[S4]

S7 = S3 * S6

S = prod+S 7 8

prod = S8

S9 = i+1

i = S9

If i <= 20 goto (1)

Final I/c Code
Generated

S1 = 4 * i
S = c(A) 2

S3 = S2[S1]

S = c(B) 5

S6 = S5[S4]
S7 = S3 * S6

prod = prod + S7

i = i + 1
If i <= 20 goto (1)

DAG representation in form of
Intermediate code

3/18/2019 PROF. ANAND GHARU

75

Rearranging order of the code
• Consider

following basic
block

t1 = a + b

t2 = c + d

t3 = e –t2

X = t1 –t3

-

+

a b

-

e +

c d

X

t 3

t2

t1

and its DAG

3/18/2019 PROF. ANAND GHARU

76

Rearranging order …

MOV a, R 0

ADD b, R0

MOV c, R1

ADD d, R1

MOV R0, t1

MOV e, R0

SUB R1, R0

MOV t1, R1

SUB R0, R1

MOV R1, X

Rearranging the code as
t2 = c + d

t3 = e –t2

t1 = a + b

X = t1 –t3

gives
MOV c, R0

ADD d, R0

MOV e, R1

SUB R0, R1

MOV a, R0

ADD b, R0

SUB R1, R0

MOV R1, X

Register spilling

Register reloading

t1 = a + b
t2 = c + d
t3 = e –t2

X = t1 –t3
So. We need

to decide the

order

3/18/2019 PROF. ANAND GHARU

Ordering of Trees

Ordering can be decided using

• A) Heuristic Ordering

• B) Optimal Ordering(Labelling)

3/18/2019 PROF. ANAND GHARU

Heuristic Ordering of Trees

• Heuristics attempts to order the nodes of a DAG

so that, if possible, a node immediately follows

the evaluation of its left-most operand.

3/18/2019 PROF. ANAND GHARU

79

Heuristic Ordering of Trees

• The algorithm for heuristic ordering is given below. It lists the

nodes of a DAG such that the node's reverse listing results in the

computation order.

While there exists an unlisted interior node do
{

Select an unlisted node n whose parents have been listed
list n

while there exists a left-most child m of n that has no
unlisted parents and m is not a leaf do
{

list m

n = m

}

}

order = reverse of the order of listing of nodes

}

3/18/2019 PROF. ANAND GHARU

Heuristic Ordering of Trees

• Consider the DAG shown in Figure 1.

The order in which the nodes are listed
by the heuristic ordering is shown
in Figure 2.

*

-

+

a b
c

d e
-

+

a b
c

d e

* 1

+ 2 - 3
4

*
5

6

+ 7

Order : 7654321

1

+

2

-

4

* 3

5

+
6

3/18/2019 PROF. ANAND GHARU

Heuristic Ordering of Trees

Final Order
decided is :

t7 = d+ e
t6 = a+ b
t5= t6- c
t4 =t5* t8
t7 = t4- t8
t2 = t6 + t4
t1 = t2 * t3

The previous order :

t1 = a+ b
t2 = t1- c
t3= d + e
t4 = t2 * t3
t5 = t1 + t4
t6 = t4 – t3
t7 = t5 * t6

3/18/2019 PROF. ANAND GHARU

Optimal Ordering of Trees : Labelling
Algorithm

•Optimal ordering means yielding the order that

has shortest instruction sequence

3/18/2019 PROF. ANAND GHARU

Optimal Ordering of Trees : Labelling
Algorithm

• Optimal ordering means yielding the order that

has shortest instruction sequence

• Label each node of the tree bottom up with an

integer denoting fewest number of registers

required to evaluate the tree with no stores of

immediate results.

• Generate code during tree traversal by first

evaluating the operand requiring more registers

3/18/2019 PROF. ANAND GHARU

84

Optimal Ordering of Trees : Labeling
Algorithm

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 85

Optimal Ordering of Trees : Labeling
Algorithm

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 86

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Code Generator

Generators

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Code Generator Generators

Refer ence : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi

3/18/2019 PROF. ANAND GHARU

8 Reference : Aho Ullman, Sethi 9

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 101

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 102

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 103

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 104

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 105

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 106

3/18/2019 PROF. ANAND GHARU

MOV#a,R0

ADD Sp, R0

ADD i(SP), R0

MOV b, R1

INC R1

MOV R1, *R0

CODE GENERATOR GENERATOR :
FINAL CODE GENERATED

Reference : Aho Ullman, Sethi 107

3/18/2019 PROF. ANAND GHARU

Not in syllabus…but may ask

Reference : Aho Ullman, Sethi 108

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 109

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 110

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 111

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 110

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 113

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 114

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 115

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 116

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 117

3/18/2019 PROF. ANAND GHARU

Reference : Aho Ullman, Sethi 118

3/18/2019 PROF. ANAND GHARU

 MY BLOG :

anandgharu.wordpress.comg :

anandgharu.wordpress.com

0THANK

YOU!!!!!!!!!!

3/18/2019
PROF. ANAND GHARU

