
PUNE VIDYARTHI GRIHA’s

COLLEGE OF ENGINEERING, NASHIK.

“ RUN TIME STORAGE ORGANIZATION ”

PREPARED BY :

PROF. ANAND N. GHARU

ASSISTANT PROFESSOR

COMPUTER DEPARTMENT

SUBJECT – COMPILER (BE COMPUTER SPPU-2019)
3/17/2019 PROF. GHARU ANAND

(PVGCOE,NASHIK)

CONTENTS :-

1. Storage Management – Static, Stack and Heap

2. Activation Record, static and control links, parameter

passing, return value, passing array and variable

number of arguments

3. Static and Dynamic scope, Dangling Pointers,

translation of control structures – if, if-else statement,

Switch-case, while, do -while statements, for, nested

blocks,

4. display mechanism, array assignment, pointers,

function call and return. Translation of OO constructs:

Class, members and Methods.
 3/17/2019 PROF. GHARU ANAND

(PVGCOE,NASHIK)

Run-time Storage

Run-Time Environment

Storage Organization

Storage Allocation Strategies

Dynamic Storage Allocation

2

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Run-Time Environments
3

 The compiler must implement various abstractions in the source

language definition such as

□ Names used in a program

□ Define the scope of variables

□ Data types

□ Operators

□ Procedures

□ Parameters and

□ Flow of control constructs.

 The compiler must co-operate with operating system and other

systems software to support the implementation of these

abstractions on the target machine. This can be done by the

compiler by creating run-time environment.
3/17/2019 PROF. GHARU ANAND

(PVGCOE,NASHIK)

Run-Time Environments

What is run-time environment in compiler design?
 A run-time environment in compiler design deals variety of issues

such as:

1. Managing the processor stack.

2. Layout and allocation of memory for various variables used in the

source program.

3. Instructions to copy the actual parameters on top of the stack

when a function is called.

4. Allocating and de-allocating the memory dynamically with the

help of operating system.

5. The mechanism used by the target program to access variables.

6. The mechanism to pass parameters.

7. The interfaces to the operating system, input/output devices and

other programs.

4

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Run-Time Environments
5

 A lot has to happen at run time to get your program running.

 At run time, we need a system to map NAMES (in the source

program) to STORAGE on the machine.

 Allocation and deallocation of memory is handled by a RUN-

TIME SUPPORT SYSTEM typically linked and loaded along

with the compiled target code.

 One of the primary responsibilities of the run-time system is to

manage ACTIVATIONS of procedures.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Run-Time Environments
6

 For allocating memory to data items, the following information

is required:

1. Size of data item

2. The type of data item

3. Dimensions of the data item

4. Scope of the data item

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Run-Time Environments
7

 The organization of data objects in memory depends on the

source language features:

1. Recursion

2. Parameter passing mechanism

3. Local names

4. Non-local names

5. Dynamic data structures

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Run-time Storage

Run-Time Environment

Storage Organization

Storage Allocation Strategies

Dynamic Storage Allocation

8

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Storage Organization
9

 Suppose that the compiler obtains memory from the OS so that

it can execute the compiled program

 Program gets loaded on a newly created process

 This runtime storage must hold

 Generated target code

 Data objects

 A counterpart of the control stack to keep track of procedure

activations

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

code for function 1

code for function 2

code for function n

. . .

Runtime Memory
10

global / static area

stack

heap

free space

 PASCAL and C use extensions of the

control stack to manage activations of

procedures

 Stack contains information about register

values, value of program counter and

data objects whose lifetimes are

contained in that of an activation

 Heap holds all other information. For

example, activations that cannot be

represented as a tree.

 By convention, stack grows down and the

top of the stack is drawn towards the

bottom of this slide (value of top is usually

kept in a register)

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

code for function 1

code for function 2

code for function n

. . .

code for function 1

code for function 2

code for function n

. . .

Runtime Memory
11

global / static area

stack

heap

free space

global / static area

stack

heap

free space

Stack grows

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Activation Record

 Information needed by a single
execution of a procedure is managed
using an activation record or frame

 Not all compilers use all of the
fields

returned value

actual parameters

optional control link

12

 Pascal and C push activation record
on the runtime stack when procedure
is called and pop the activation
record off the stack when control
returns to the caller

optional access link

saved machine status

local data

temporaries

Fig: A typical Activation Record

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

13

Activation Record

1) Temporary values
Ex. those arising in the evaluation of
expressions

2) Local data
Data that is local to an execution of the
procedure

3) Saved machine status
State of the machine info before
procedure is called. Values of program
counter and machine registers that have
to be restored when control returns from
the procedure

returned value

actual parameters

optional control link

optional access link

saved machine status

local data

temporaries

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

14

Activation Record

4) Access Link
refer to non-local data held in other

activation records

5) Control link

points to the activation record of the caller

6) Actual parameters
used by the calling procedure to supply

parameters to the called procedure

(in practice these are passed in registers)

7) Returned value

used by the called procedure to return a

value to the calling procedure

(in practice it is returned in a register)

returned value

actual parameters

optional control link

optional access link

saved machine status

local data

temporaries

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Local data
15

 The field for local data is set when declarations in a procedure

are examined during compile time

 Variable-length data is not stored here

 Keep a count of the memory locations that have been

allocated so far

 Determine a relative address (offset) of the storage for a

local with respect to some position (e.g. beginning of the

frame)

• Multibyte objects are stored in consecutive bytes and

given the address of the first byte

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Run-time Storage

Run-Time Environment

Storage Organization

Storage Allocation Strategies

Dynamic Storage Allocation

16

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Organization of storage
17

 Fixed-size objects can be

placed in predefined

locations.

 The heap and the stack

need room to grow,

however.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Run-time stack and heap
18

 The STACK is used to store:

 Procedure activations.

 The status of the machine just before calling a procedure, so

that the status can be restored when the called procedure

returns.

 The HEAP stores data allocated under program control

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Storage Allocation Strategies
19

 The various storage allocation strategies to allocate storage in

different data areas of memory are:

1. Static Allocation

• Storage is allocated for all data objects at compile time

2. Stack Allocation

• The storage is managed as a stack

3. Heap Allocation (It is one of Dynamic Storage Allocation)

• The storage is allocated and deallocated at runtime from a

data area known as heap

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Static Allocation
20

 In a static environment (Fortran 77) there are a number of

restrictions:

 Size of data objects are known at compile time

 No recursive procedures

 No dynamic memory allocation

 Only one copy of each procedure activation record exists at

time t

 We can allocate storage at compile time

• Bindings do not change at runtime

• Every time a procedure is called, the same bindings occur

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Static Allocation
21

 Statically allocated names are bound to relocatable storage

at compile time.

 Storage bindings of statically allocated names never change.

 The compiler uses the type of a name (retrieved from the

symbol table) to determine storage size required.

 The required number of bytes (possibly aligned) is set aside

for the name.

 The relocatable address of the storage is fixed at compile

time.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Static Allocation

int i = 10;

int f(int j)

{

int k;

int m;

…

code for function 1

code for function 2

code for function n

. . .

code main()

code f()

i (int)

22

}

main()

{

int k;

f(k);

}

global / static area

stack

heap

free space

k (int)

k (int)
m (int)

main()
Activation
record

f()
Activation
record

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

23

Static allocation

 Limitations:

□ The size required must be known at compile time.

□ Recursive procedures cannot be implemented statically.

□ No data structure can be created dynamically as all data is

static.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Stack-based Allocation
24

 In a stack-based allocation, the previous restrictions are lifted
(Pascal, C, etc)

 procedures are allowed to be called recursively

o Need to hold multiple activation records for the same
procedure

o Created as required and placed on the stack

Each record will maintain a pointer to the record that
activated it

On completion, the current record will be deleted
from the stack and control is passed to the calling
record

 Dynamic memory allocation is allowed

 Pointers to data locations are allowed

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Stack-dynamic allocation
25

 Storage is organized as a stack.

 Activation records are pushed and popped.

 Locals and parameters are contained in the activation records

for the call.

 This means locals are bound to fresh storage on every call.

 We just need a stack_top pointer.

 To allocate a new activation record, we just increase stack_top.

 To deallocate an existing activation record, we just decrease

stack_top.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Stack-based Allocation

PROGRAM sort(input,output);

VAR a : array[0..10] of Integer;

PROCEDURE readarray;

VAR i : Integer;

BEGIN

for i:= 1 to 9 do read(a[i]);

END;

FUNCTION partition(y,z : Integer):

Integer;
VAR i,j,x,v : Integer;

Position in
Activation Tree

Activation Records
On Stack

s
s

a (array)

26

BEGIN

…

END;

PROCEDURE quicksort(m,n : Integer);

VAR i : Integer;

BEGIN

if (n > m) then BEGIN

i := partition(m,n);

quicksort(m, i-1);

quicksort(i+1,n)

END

END;

BEGIN /* of main */

a[0] := -9999; a[10] := 9999;

readarray;

quicksort(1,9)

END.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Position in
Activation Tree

Activation Records
On Stack

s

a (array)
s

27

Stack-based Allocation

PROGRAM sort(input,output);

VAR a : array[0..10] of Integer;

PROCEDURE readarray;

VAR i : Integer;

BEGIN

for i:= 1 to 9 do read(a[i]);

END;

FUNCTION partition(y,z : Integer):

Integer;

VAR i,j,x,v : Integer;

BEGIN

…

END;

PROCEDURE quicksort(m,n : Integer);

VAR i : Integer;

BEGIN

if (n > m) then BEGIN

i := partition(m,n);

quicksort(m, i-1);

quicksort(i+1,n)

END

END;

BEGIN /* of main */

a[0] := -9999; a[10] := 9999;

readarray;

quicksort(1,9)

END.

r r

i (integer)

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Position in
Activation Tree

Activation Records
On Stack

s

a (array)
s

28

Stack-based Allocation

PROGRAM sort(input,output);

VAR a : array[0..10] of Integer;

PROCEDURE readarray;

VAR i : Integer;

BEGIN

for i:= 1 to 9 do read(a[i]);

END;

FUNCTION partition(y,z : Integer):

Integer;

VAR i,j,x,v : Integer;

BEGIN

…

END;

PROCEDURE quicksort(m,n : Integer);

VAR i : Integer;

BEGIN

if (n > m) then BEGIN

i := partition(m,n);

quicksort(m, i-1);

quicksort(i+1,n)

END

END;

BEGIN /* of main */

a[0] := -9999; a[10] := 9999;

readarray;

quicksort(1,9)

END.

r q(1,9)

i (integer)

q(1,9)

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Position in
Activation Tree

Activation Records
On Stack

s

s

29

Stack-based Allocation

PROGRAM sort(input,output);

VAR a : array[0..10] of Integer;

PROCEDURE readarray;

VAR i : Integer;

BEGIN

for i:= 1 to 9 do read(a[i]);

END;

FUNCTION partition(y,z : Integer):

Integer;

VAR i,j,x,v : Integer;

BEGIN

…

END;

PROCEDURE quicksort(m,n : Integer);

VAR i : Integer;

BEGIN

if (n > m) then BEGIN

i := partition(m,n);

quicksort(m, i-1);

quicksort(i+1,n)

END

END;

BEGIN /* of main */

a[0] := -9999; a[10] := 9999;

readarray;

quicksort(1,9)

END.

r

a (array)

q(1,9) q(1,9)

q(1,3) p(1,9) i (integer)

q(1,3)

i (integer)

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Position in

Activation Tree

Activation Records

on the Stack

30

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Address generation in stack allocation
31

 The position of the activation record on the stack cannot be

determined statically.

 Therefore the compiler must generate addresses RELATIVE to

the activation record.

 We generate addresses of the form

stack_top + offset

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Calling Sequences

 Procedure calls are implemented by

generating calling sequences in the target

code

□ Call sequence: allocates activation

record and enters information into fields

returned value

actual parameters

optional control link

32

□ Return sequence: restores the state of

the machine so that the calling

procedure can continue execution

optional access link

saved machine status

local data

temporaries

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Calling Sequences

 Why placing returned value and

actual parameters next to the

activation record of the caller?

□ Caller can access these values

using offsets from its own

caller

33

activation record

□ No need to know the middle part
of the callee’s activation record

callee

returned value

actual parameters

optional control link

optional access link

saved machine status

local data

temporaries

returned value

actual parameters

optional control link

optional access link

saved machine status

local data

temporaries

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

caller

returned value

actual parameters

34

Calling Sequences

 How do we calculate offset?

□ Maintain a register that
points to the end of the
machine status field in an
activation record

□ Top_sp is known to the caller,
so it can be responsible for
setting it before control flows
to the called procedure

□ Callee can access its
temporaries and local data
using offsets from top_sp

callee

optional control link

optional access link

saved machine status

local data

temporaries

returned value

actual parameters

optional control link

optional access link

saved machine status

local data

temporaries

top_sp

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Call Sequence
35

 The caller evaluates actuals

 The caller

□ stores a return address and the old value of top_sp into the
callee’s activation record

□ increments top_sp; that is moved past the caller’s local
data and temporaries and the callee’s parameter and
status fields

 The callee

□ saves register values and other status information

 The callee

□ initializes its local data and begins execution

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Return Sequence

36

 The callee places a return value next to the activation record

of the caller

 Using the information in the status field, the callee

□ restores top_sp and other registers

□ braches to a return address in the caller’s code

 Although top_sp has been decremented, the caller can copy

the returned value into its own activation record and use it to

evaluate an expression

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Example of variable- length data

 All variable-length data is

pointed to from the local data

area.

38

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Dangling References
39

 Whenever storage is deallocated, the problem of dangling

references arises

□ Occurs when there is a reference to storage that has been

deallocated

□ Logical error

Mysterious bugs can appear

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

What’s the problem?

40

Dangling References

int *dangle()

{

int i = 23;

return &i;

}

main()

{

int *p;

p = dangle();

}

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

int *dangle()

{

int i = 23;

return &i;

 Local variable i only exists in

dangle()

41

Dangling References

}

main()

{

int *p;

p = dangle();

}

 When procedure completes

execution and control is transferred

to main(), the space for i does not

exist anymore (pop activation

record for dangle off the stack)

 Pointer p is a dangling reference

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Stack Allocation Advantages and Disadvantages
42

Advantages:

 It supports recursion as memory is always allocated on block

entry.

 It allows to create data structures dynamically.

 It allows an array declaration like A(I, J), since actual

allocation is made only at execution time. The dimension

bounds need not be known at compile time.

Disadvantages:

 Memory addressing has to be effected through pointers and

index registers which may be store them, static allocation

especially in case of array reference.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Heap Allocation
43

Stack allocation cannot be used if:

 The values of the local variables must be retained when an

activation ends

 A called activation outlives the caller

 In such a case de-allocation of activation record cannot occur

in last-in first-out fashion

 Heap allocation gives out pieces of contiguous storage for

activation records

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Heap Allocation
44

There are two aspects of dynamic allocation :

 Runtime allocation and de-allocation of data structures

 Languages like Algol have dynamic data structures and it

reserves some part of memory for it.

If a procedure wants to put a value that is to be used after its activation

is over then we cannot use stack for that purpose. That is language like

Pascal allows data to be allocated under program control. Also in

certain language a called activation may outlive the caller procedure. In

such a case last-in-first-out queue will not work and we will require a

data structure like heap to store the activation. The last case is not true

for those languages whose activation trees correctly depict the flow of

control between procedures.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Heap Allocation
45

 Some languages do not have tree-structured allocations.

 In these cases, activations have to be allocated on the heap.

 This allows strange situations, like callee activations that live

longer than their callers’ activations.

 This is not common.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Heap Allocation
46

 Pieces may be de-allocated in any order

 Over time the heap will consist of alternate areas that are

free and in use

 Heap manager is supposed to make use of the free space

 For efficiency reasons it may be helpful to handle small

activations as a special case

 For each size of interest keep a linked list of free blocks of

that size

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Heap Allocation
47

 Fill a request of size s with block of size s ' where s ' is the

smallest size greater than or equal to s

 For large blocks of storage use heap manager

 For large amount of storage computation may take some time

to use up memory so that time taken by the manager may be

negligible compared to the computation time

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Heap Allocation
48

 For efficiency reasons we can handle small activations and

activations of predictable size as a special case as follows:

1. For each size of interest, keep a linked list if free blocks of that

size

2. If possible, fill a request for size s with a block of size s', where s'

is the smallest size greater than or equal to s. When the block is

eventually de-allocated, it is returned to the linked list it came

from.

3. For large blocks of storage use the heap manger.

Heap manger will dynamically allocate memory. This will come with a

runtime overhead. As heap manager will have to take care of

defragmentation and garbage collection. But since heap manger saves

space otherwise we will have to fix size of activation at compile time,

runtime overhead is the price worth it.
3/17/2019 PROF. GHARU ANAND

(PVGCOE,NASHIK)

Access to non-local names
49

 Scope rules determine the treatment of non-local names

 A common rule is lexical scoping or static scoping (most

languages use lexical scoping)

 The scope rules of a language decide how to reference the

non-local variables. There are two methods that are commonly

used:

1. Static or Lexical scoping: It determines the declaration that

applies to a name by examining the program text alone. E.g.,

Pascal, C and ADA.

2. Dynamic Scoping: It determines the declaration applicable to

a name at run time, by considering the current activations.

E.g., Lisp

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Block
50

 Blocks can be nested

 The property is referred to as block structured

 Scope of the declaration is given by most closely nested rule

• The scope of a declaration in block B includes B

• If a name X is not declared in B then an occurrence of X is in

the scope of declarator X in B ' such that

o B ' has a declaration of X

o B ' is most closely nested around B

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Block Example
51

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Block Example
52

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Blocks

 Blocks are simpler to handle than procedures

 Blocks can be treated as parameter less procedures

 Use stack for memory allocation

 Allocate space for complete procedure body at one time

53

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Blocks
54

 There are two methods of implementing block structure:

1. Stack Allocation : This is based on the observation that scope of a

declaration does not extend outside the block in which it

appears, the space for declared name can be allocated when the

block is entered and de-allocated when controls leave the block.

The view treat block as a "parameter less procedure" called only

from the point just before the block and returning only to the

point just before the block.

2. Complete Allocation : Here you allocate the complete memory at

one time. If there are blocks within the procedure, then allowance

is made for the storage needed for declarations within the books.

If two variables are never alive at the same time and are at

same depth they can be assigned same storage.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Lexical scope without nested procedures
55

 A procedure definition cannot occur within another

 Therefore, all non local references are global and can be

allocated at compile time

 Any name non-local to one procedure is non-local to all

procedures

 In absence of nested procedures use stack allocation

 Storage for non locals is allocated statically

 A non local name must be local to the top of the stack

 Stack allocation of non local has advantage:

• Non locals have static allocations

• Procedures can be passed/returned as parameters

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Lexical scope without nested procedures
56

 In languages like C nested procedures are not allowed. That is, you

cannot define a procedure inside another procedure. So, if there is a

non- local reference to a name in some function then that variable must

be a global variable. The scope of a global variable holds within all the

functions except those in which the variables have been re- declared.

Storage for all names declared globally can be allocated statically. Thus

their positions will be known at compile time. In static allocation, we use

stack allocation. Any other name must be a local of the activation at the

top of the stack, accessible through the top pointer. Nested procedures

cause this scheme to fail because a non-local may then refer to a local of

parent variable which may be buried deep in the stack and not at the

top of stack. An important benefit of static allocation for non- locals is

that declared procedures can freely be passed as parameters and

returned as results (a function is passed in C by passing a pointer to it).

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Scope with nested procedures
57

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Scope with nested procedures
58

 The above example contains a program in Pascal with nested

procedure sort

1. Readarray

2. Exchange

3. Quicksort

4. Partition

 Here we apply the most closely nested rule for deciding

scoping of variables and procedure names. The procedure

exchange called by partition , is non-local to partition.

Applying the rule, we first check if exchange is defined within

quicksort ; since it is not, we look for it in the main program sort.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Nesting Depth
59

 Main procedure is at depth 1

 Add 1 to depth as we go from enclosing to enclosed

procedure

Access to non-local names

 Include a field 'access link' in the activation record

 If p is nested in q then access link of p points to the access link in

most recent activation of q

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Nesting Depth
60

 Nesting Depth: The notion of nesting depth is used to implement

lexical scope. The main program is assumed to be at nesting

depth 1 and we add 1 to the nesting depth as we go from an

enclosing to an enclosed procedure.

 Access Links: To implement the lexical scope for nested

procedures we add a pointer called an access link to each

activation record. If a procedure p is nested immediately within

q in the source text, then the access link in an activation record

for p points to the access link in the record for most recent

activation of q .

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Nesting Depth
61

 The access links for finding storage for non-locals are

 shown below.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Access to non local names
62

 Suppose procedure p at depth np refers to a non- local a at

depth na, then storage for a can be found as

 follow (np-na) access links from the record at the top of the

stack

 after following (np-na) links we reach procedure for which

a is local

 Therefore, address of a non local a in procedure p can be

stored in symbol table as

(np-na, offset of a in record of activation having a)

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Access to non local names
63

 Suppose procedure p at depth np refers to a non-local a with

nesting depth na = np. The storage for a can be found as follows:

 When control is in p, an activation record for p is at the top of

the stack. Follow the (np - na) access links from the record at

the top of the stack.

 After following (np - na) links, we reach an activation record

for the procedure that a is local to. As discussed earlier, its

storage is at a fixed offset relative to a position in the record.

In particular, the offset can be relative to the access link.

 The address of non-local a in procedure p is stored as following in

the symbol table:

(np - na, offset within the activation record containing a)

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

How to setup access links?
64

 suppose procedure p at depth np calls procedure x at depth nx.

 The code for setting up access links depends upon whether the

called procedure is nested within the caller.

np < nx

 Called procedure is nested more deeply than p. Therefore, x must

be declared in p. The access link in the called procedure must point

to the access link of the activation just below it

np ≥ nx

 From scoping rules enclosing procedure at the depth 1,2,. ,nx-1

must be same. Follow np-(nx-1) links from the caller, we reach the

most recent activation of the procedure that encloses both called

and calling procedure

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Procedure Parameters
65

program param (input,output);

procedure b(function h(n:integer): integer);

begin

writeln (h(2))

end;

procedure c;

var m: integer;

function f(n: integer): integer;

begin

f := m + n

end;

begin

m :=0; b(f)

end;

begin

c

end.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Procedure Parameters
66

 Scope of m does not include procedure b

 within b, call h(2) activates f

 it outputs f(2) which is 2

 how is access link for activation of f is set up?

 a nested procedure must take its access link along with it

 when c passes f:

 it determines access link for f as if it were calling f

 this link is passed along with f to b

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Procedure Parameters
67

 Lexical scope rules apply even when a nested procedure is

passed as a parameter. In the program shown in the previous

slide, the scope of declaration of m does not include the body

of b. Within the body of b, the call h(2) activates f because the

formal h refers to f. Now how to set up the access link for the

activation of f? The answer is that a nested procedure that is

passed as a parameter must take its access link along with it, as

shown in the next slide. When procedure c passes f, it

determines an access link for f, just as it would if it were calling

f. This link is passed along with f to b. Subsequently, when f is

activated from within b, the link is used to set up the access link

in the activation record for f.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Procedure Parameters
68

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Displays
69

 Faster access to non locals

 Uses an array of pointers to activation records

 Non locals at depth i is in the activation record pointed to by

d[i]

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Dynamic Scope
70

 Binding of non local names to storage do not change when new

activation is set up

 A non local name a in the called activation refers to same

storage that it did in the calling activation

 In dynamic scope , a new activation inherits the existing

bindings of non local names to storage. A non local name a

in the called activation refers to the same storage that it did

in the calling activation. New bindings are set up for the

local names of the called procedure, the names refer to

storage in the new activation record.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Dynamic Scoping: Example
71

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Dynamic Scoping: Example
72

 Output under lexical scoping

0.250 0.250

0.250 0.250

 Output under dynamic scoping

0.250 0.125

0.250 0.125

 The outputs under the lexical and the dynamic scoping are as

shown. Under dynamic scoping, when show is called in the main

program, 0.250 is written because the variable r local to the

main program is used. However, when show is called from within

small, 0.125 is written because the variable r local to small is

used.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Implementing Dynamic Scope

Deep Access

 Dispense with access links

 use control links to search into the stack

 term deep access comes from the fact that search may go

deep into the stack

Shallow Access

 hold current value of each name in static memory

 when a new activation of p occurs a local name n in p takes

over the storage for n

 previous value of n is saved in the activation record of p

73

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Implementing Dynamic Scope
74

We will discuss two approaches to implement dynamic scope. They bear

resemblance to the use of access links and displays, respectively, in the

implementation of the lexical scope.

1. Deep Access : Dynamic scope results if access links point to the same

activation records that control links do. A simple implementation is to

dispense with access links and use control links to search into the stack,

looking for the first activation record containing storage for the non- local

name. The term deep access comes from the fact that search may go

deep into the stack. The depth to which the search may go depends on the

input of the program and cannot be determined at compile time.

2. Shallow Access : Here the idea is to hold the current value of each name in

static memory. When a new activation of a procedure p occurs, a local

name n in p takes over the storage for n. The previous value of n is saved

in the activation record for p and is restored when the activation of p

ends.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Parameter Passing
75

Call by value

 actual parameters are evaluated and their rvalues are passed

to the called procedure

 used in Pascal and C

 formal is treated just like a local name

 caller evaluates the actual parameters and places rvalue in the

storage for formals

 call has no effect on the activation record of caller

 This is, in a sense, the simplest possible method of passing

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Parameter Passing
76

Call by value

 This is, in a sense, the simplest possible method of passing

parameters. The actual parameters are evaluated and their r-

values are passed to the called procedure. Call-by-value is

used in C, and Pascal parameters are usually passed this way.

Call-by-Value can be implemented as follows:

1. A formal parameter is treated just like a local name, so the

storage for the formals is in the activation record of the called

procedure.

2. The caller evaluates the actual parameters and places their r-

values in the storage for the formals. A distinguishing feature

of call-by-value is that operations on the formal parameters

do not affect values in the activation record of the caller.
3/17/2019 PROF. GHARU ANAND

(PVGCOE,NASHIK)

Parameter Passing

Call by reference (call by address)

 the caller passes a pointer to each location of actual

parameters

 if actual parameter is a name then lvalue is passed

 if actual parameter is an expression then it is evaluated in a

new location and the address of that location is passed

77

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Parameter Passing
78

Call by reference (call by address)

 When the parameters are passed by reference (also known as

call-by-address or call-by location), the caller passes to the

called procedure a pointer to the storage address of each

actual parameter.

1. If an actual parameter is a name or an expression having an l-

value, then that l-value itself is passed.

2. However, if the actual parameter is an expression, like a + b

or 2, that has no l-value, then the expression is evaluated in a

new location, and the address of that location is passed.

 A reference to a formal parameter in the called procedure

becomes, in the target code, an indirect reference through the

pointer passed to the called procedure.
3/17/2019 PROF. GHARU ANAND

(PVGCOE,NASHIK)

Parameter Passing
79

Copy restore (copy-in copy-out, call by value result)

 actual parameters are evaluated, rvalues are passed by call

by value, lvalues are determined before the call

 when control returns, the current rvalues of the formals are

copied into lvalues of the locals

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Parameter Passing
80

Copy restore (copy-in copy-out, call by value result)

 This is a hybrid form between call-by-value and call-by-

reference (also known as copy-in copy-out or value-result).

1. Before control flows to the called procedure, the actual

parameters are evaluated. The r-values of the actuals are

passed to the called procedure as in call-by-value. In

addition, however, the l-values of those actual parameters

having l-values are determined before the call.

2. When the control returns, the current r-values of the formal

parameters are copied back into the l-values of the actuals,

using the l-values computed before the call. Only the actuals

having l-values are copied.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Parameter Passing
81

Call by name (used in Algol)

 names are copied

 local names are different from names of calling procedure

swap(i,a[i])

temp = I

i = a[i]

a[i] = temp

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Parameter Passing
82

Call by name (used in Algol)

 This is defined by the copy-rule as used in Algol.

1. The procedure is treated as if it were a macro; that is, its body

is substituted for the call in the caller, with the actual

parameters literally substituted for the formals. Such a literal

substitution is called macro-expansion or inline expansion.

2. The local names of the called procedure are kept distinct from

the names of the calling procedure. We can think of each local

of the called procedure being systematically renamed into a

distinct new name before macro-expansion is done.

3. The actual parameters are surrounded by parentheses if

necessary to preserve their integrity.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Run-time Storage

Run-Time Environment

Storage Organization

Storage Allocation Strategies

Dynamic Storage Allocation

83

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Dynamic Allocation
84

 Returning the address of a local variable is defined to be a

logical error (e.g. in C)

 In a dynamic environment there is no such restriction

□ All variables and activation records must be maintained for

as long as there are references to them

Callee outlives the caller

□ It is also possible to return pointers to local functions

□ Must deallocate space when procedures and variables are

no longer needed (garbage collection)

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Dynamic Allocation

 Use a heap to maintain these records

□ Also called free store

□ Heap management is challenging

85

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Language Facility for Dynamic Storage Allocation
86

 Storage is usually taken from heap

 Allocated data is retained until deallocated

 Allocation can be either explicit or implicit

 Pascal: explicit allocation and de-allocation by new() and

dispose()

 Lisp: implicit allocation when cons is used, and de- allocation

through garbage collection

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

87

Language Facility for Dynamic Storage Allocation

 Static storage allocation is usually done on the stack, as this is a

convenient way to take care of the normal scoping rules, where

the most recent values have to be considered, and when the

scope ends, their values have to be removed.

 But for dynamic allocation, no such prior information regarding

the use of the variables is available. So we need the maximum

possible flexibility in this. For this a heap is used.

 For the sake of a more efficient utilization of memory, the stack

grows downwards and the heap grows upwards, starting from

different ends of the available memory. This makes sure that all

available memory is utilized.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

88

Language Facility for Dynamic Storage Allocation

 Pascal allows for explicit allocation and de-allocation of

memory. This can be done by using the new() and dispose()

functions.

 However, in Lisp, continuous checking is done for free memory.

 When less than 20 percent of the memory is free, then garbage

collection is performed.

 In garbage collection, cells that can no longer be accessed are

de-allocated. (Storage that has been allocated but can no

longer be accessed is called 'garbage'.)

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Dynamic Storage Allocation
89

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Dynamic Storage Allocation
90

Generally languages like Lisp and ML which do not allow for explicit de-allocation

of memory do garbage collection. A reference to a pointer that is no longer

valid is called a 'dangling reference'. For example, consider this C code:

int main (void)

{

int* a=fun();

}

int* fun()

{

int a=3;

int* b=&a;

return b;

}

Here, the pointer returned by fun() no longer points to a valid address in

memory as the activation of fun() has ended. This kind of situation is called

a 'dangling reference'. In case of explicit allocation it is more likely to

happen as the user can de-allocate any part of memory, even something

that has to a pointer pointing to a valid piece of memory.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Dynamic Storage Allocation
91

Explicit Allocation of Fixed Sized Blocks

 Link the blocks in a list

 Allocation and de-allocation can be done with very little overhead

 The simplest form of dynamic allocation involves blocks of

a fixed size.

 By linking the blocks in a list, as shown in the figure, allocation

and de-allocation can be done quickly with little or no storage

overhead.

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Dynamic Storage Allocation
92

Explicit Allocation of Fixed Sized Blocks .

 blocks are drawn from contiguous area of storage

 An area of each block is used as pointer to the next block

 A pointer available points to the first block

Allocation means removing a block from the available list

De-allocation means putting the block in the available list

Compiler routines need not know the type of objects to be held

in the blocks

Each block is treated as a variant record

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

Explicit Allocation of Variable Size Blocks

• Storage can become fragmented

• Situation may arise

 If program allocates five blocks

 then de-allocates second and fourth block

Dynamic Storage Allocation
93

• Fragmentation is of no consequence if blocks are of fixed size

• Blocks can not be allocated even if space is available

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

94

Dynamic Storage Allocation

First Fit Method

When a block of size s is to be allocated

-search first free block of size f ≥ s

-sub divide into two blocks of size s and f-s

-time overhead for searching a free block

When a block is de-allocated

-check if it is next to a free block

-combine with the free block to create a larger free block

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

95

Dynamic Storage Allocation

Implicit De-allocation

 Requires co-operation between user program and run

time system

 Run time system needs to know when a block is no longer in use

 Implemented by fixing the format of storage blocks

 Implicit deallocation requires cooperation between the user

program and run time package,

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

My Blog : anandgharu.wordpress.com

THANK YOU!!!!!!!!!!

3/17/2019 PROF. GHARU ANAND
(PVGCOE,NASHIK)

