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Syntax-Directed Translation 

3 

1. We associate information with the programming language constructs by attaching  
attributes to grammar symbols. 

 
2. Values of these attributes are evaluated by the semantic rules associated with the  

production rules. 

 

3. Evaluation of these semantic rules: 
– may generate intermediate codes 

– may put information into the symbol table 

– may perform type checking 

– may issue error messages 

– may perform some other activities 

– in fact, they may perform almost any activities. 

 

4. An attribute may hold almost any thing. 
– a string, a number, a memory location, a complex record. 
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Syntax-Directed Definitions and Translation Schemes 
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1. When we associate semantic rules with productions, we use two  
notations: 

– Syntax-Directed Definitions 

– Translation Schemes 

 
A. Syntax-Directed Definitions: 

– give high-level specifications for translations 

– hide many implementation details such as order of evaluation of semantic actions. 

– We associate a production rule with a set of semantic actions, and we do not say when they  
will be evaluated. 

 

B. Translation Schemes: 
– indicate the order of evaluation of semantic actions associated with a production rule. 

– In other words, translation schemes give a little bit information about implementation  
details. 
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Syntax-Directed Translation 
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• Conceptually with both the syntax directed translation and translation  

scheme we 

– Parse the input token stream 

– Build the parse tree 

– Traverse the tree to evaluate the semantic rules at the parse tree nodes. 

Input string parse tree dependency graph evaluation order for  

semantic rules 

Conceptual view of syntax directed translation 
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Syntax-Directed Definitions 
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1. A syntax-directed definition is a generalization of a context-free  

grammar in which: 

– Each grammar symbol is associated with a set of attributes. 

– This set of attributes for a grammar symbol is partitioned into two subsets called 

• synthesized and 

• inherited attributes of that grammar symbol. 

– Each production rule is associated with a set of semantic rules. 

 
2. The value of an attribute at a parse tree node is defined by the semantic rule  

associated with a production at that node. 

3. The value of a synthesized attribute at a node is computed from the values of 

attributes at the children in that node of the parse tree 

4. The value of an inherited attribute at a node is computed from the values of  

attributes at  the  siblings and parent of that node of the parse tree 
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Syntax-Directed Definitions 
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Examples: 

Synthesized attribute : E→E1+E2  

Inherited attribute :A→XYZ 

{ E.val =E1.val + E2.val} 

{Y.val = 2 * A.val} 

1. Semantic rules set up dependencies between attributes which can be  

represented by a dependency graph. 

 
2. This dependency graph determines the evaluation order of these  

semantic rules. 

 
3. Evaluation of a semantic rule defines the value of an attribute. But a  

semantic rule may also have some side effects such as printing a value. 
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Annotated Parse Tree 
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1. A parse tree showing the values of attributes at each node is called  

an annotated parse tree. 

2. Values of Attributes in nodes of annotated parse-tree are either, 

– initialized to constant values or by the lexical analyzer. 

– determined by the semantic-rules. 

 

3. The process of computing the attributes values at the nodes is called 

annotating (or decorating) of the parse tree. 

 
4. Of course, the order of these computations depends on the  

dependency graph induced by the semantic rules. 
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Syntax-Directed Definition 
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In a syntax-directed definition, each production A→α is associated  

with a set of semantic rules of the form: 

b=f(c1,c2,…,cn) 

where f is a function and b can be one of the followings: 

 
 b is a synthesized attribute of A and c1,c2,…,cn are attributes of the  

grammar symbols in the production ( A→α ). 

OR 

 b is an inherited attribute one of the grammar symbols in α (on the  

right side of the production), and c1,c2,…,cn are attributes of the  

grammar symbols in the production ( A→α ). 
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Attribute Grammar 
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• So, a semantic rule b=f(c1,c2,…,cn) indicates that the attribute b 

depends on attributes c1,c2,…,cn. 

 
• In a syntax-directed definition, a semantic rule may just evaluate  

a value of an attribute or it may have some side effects such as  

printing values. 

 
• An attribute grammar is a syntax-directed definition in which the  

functions in the semantic rules cannot have side effects (they can only  

evaluate values of attributes). 
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Syntax-Directed Definition -- Example 
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Production 
L → E n 

E → E1 + T 

E → T 

T → T1 * F  

T → F 

F → ( E ) 

F → digit 

Semantic Rules 
print(E.val) 

E.val = E1.val + T.val 

E.val = T.val 

T.val = T1.val * F.val  

T.val = F.val 

F.val = E.val 

F.val = digit.lexval 

1. Symbols E, T, and F are associated with a synthesized attribute val. 

2. The token digit has a synthesized attribute lexval (it is assumed that it is evaluated by 

the lexical analyzer). 

3. Terminals are assumed to have synthesized attributes only. Values for attributes of  

terminals are usually supplied by the lexical analyzer. 

4. The start symbol does not have any inherited attribute unless otherwise stated. 
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S-attributed definition 
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• A syntax directed translation that uses synthesized attributes exclusively  

is said to be a S-attributed definition. 

 
• A parse tree for a S-attributed definition can be annotated by evaluating  

the semantic rules for the attributes at each node, bottom up from leaves  

to the root. 
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Draw the Tree Example 3*5+4n 

digit 

lexval =3 
digit 

lexval =5 

digit 

lexval =4 + * 

n 
F val=3 F val=5 

F val=4 

T val=3 

T val=15 
T val=4 

L 

 
E val=19 

Print(19) 

E val=15 
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Dependency Graph 
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Input: 3*5+4 L 

E.val=19 n 

E.val=15 + T.val=4 

digit.lexval=5 F.val=3 

digit.lexval=3 

T.val=15 

 
T.val=3 * F.val=5 

F.val=4 

digit.lexval=4 
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Inherited attributes 
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• An inherited value at a node in a parse tree is defined in terms of  

attributes at the parent and/or siblings of the node. 

 
• Convenient way for expressing the dependency of a programming  

language construct on the context in which it appears. 

 
• We can use inherited attributes to keep track of whether an identifier  

appears on the left or right side of an assignment to decide whether the  

address or value of the assignment is needed. 

 
• Example: The inherited attribute distributes type information to the  

various identifiers in a declaration. 
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Syntax-Directed Definition – Inherited Attributes 
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Production 

D → T L 

T → int  

T → real  

L → L1 id  

L → id 

Semantic Rules  

L.in = T.type  

T.type = integer  

T.type = real 

L1.in = L.in, addtype(id.entry,L.in)  

addtype(id.entry,L.in) 

1. Symbol T is associated with a synthesized attribute type. 

 
2. Symbol L is associated with an inherited attribute in. 
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Annotated parse tree 
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Input: real p,q,r 

parse tree 

D 

 
T L 

 
real L , id3 

L , id2 

 
id1 id 

entry=id2 

id 

entry=id3 

L 

in=real 

T 

type=real 

D 

real 
id 

entry=id1 

L 

in=real 

L 

in=real 

addtype(id1,real) 

addtype(id2,real) 

addtype(id3,real) 
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Dependency Graph 
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• Directed Graph 

• Shows interdependencies between attributes. 

• If an attribute b at a node depends on an attribute c, then the semantic rule for b at that  

node must be evaluated after the semantic rule that defines c. 

• Construction: 

– Put each semantic rule into the form b=f(c1,…,ck) by introducing dummy  

synthesized attribute b for every semantic rule that consists of a procedure call. 

– E.g., 

• L  E n 

• Becomes: 

print(E.val)  

dummy = print(E.val) 

– The graph has a node for each attribute and an edge to the node for b from the 

node for c if attribute b depends on attribute c. 
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Dependency Graph Construction 
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for each node n in the parse tree do 

for each attribute a of the grammar symbol at n do  

construct a node in the dependency graph for a 

 
for each node n in the parse tree do 

for each semantic rule b = f(c1,…,cn) 

associated with the production used at n do  

for i= 1 to n do 

construct an edge from 

the node for ci to the node for b 
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Dependency Graph Construction 
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• Example 

• Production   

E→E1 + E2 

Semantic Rule 

E.val = E1.val + E2.val 

E . val 

 

E1. val + E2 . Val 

• E.val is synthesized from E1.val and E2.val 

• The dotted lines represent the parse tree that is not part of the 

dependency graph. 
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Dependency Graph 
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D → T L 

T → int  

T → real  

L → L1 id 

L.in = T.type  

T.type = integer  

T.type = real  

L1.in = L.in, 

addtype(id.entry,L.in) 

L → id addtype(id.entry,L.in) 
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Evaluation Order 
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• A topological sort of a directed acyclic graph is any ordering  

m1,m2…mk of the nodes of the graph such that edges go from nodes  

earlier in the ordering to later nodes. 

. i.e if there is an edge from mi to mj them mi appears before mj in the ordering 

• Any topological sort of dependency graph gives a valid order for  

evaluation of semantic rules associated with the nodes of the parse tree. 

• The dependent attributes c1,c2….ck in b=f(c1,c2….ck ) must be available before f 

is evaluated. 

 

• Translation specified by Syntax Directed Definition 

• Input string parse tree dependency graph evaluation order for 

semantic rules 
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Evaluation Order 
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• a4=real; 

• a5=a4; 

• addtype(id3.entry,a5); 

• a7=a5; 

• addtype(id2.entry,a7); 

• a9=a7; 

• addtype(id1.entry,a5); 
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Evaluating Semantic Rules 
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• Parse Tree methods 

– At compile time evaluation order obtained from the topological sort of dependency  

graph. 

– Fails if dependency graph has a cycle 

• Rule Based Methods 

– Semantic rules analyzed by hand or specialized tools at compiler construction  

time 

– Order of evaluation of attributes associated with a production is pre-determined at  

compiler construction time 

• Oblivious Methods 

– Evaluation order is chosen without considering the semantic rules. 

– Restricts the class of syntax directed definitions that can be implemented. 

– If translation takes place during parsing order of evaluation is forced by parsing  

method. 
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Syntax Trees 
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Syntax-Tree 

– an intermediate representation of the compiler’s input. 

– A condensed form of the parse tree. 

– Syntax tree shows the syntactic structure of the program while  

omitting irrelevant details. 

– Operators and keywords are associated with the interior nodes. 

– Chains of simple productions are collapsed. 

Syntax directed translation can be based on syntax tree as well as  

parse tree. 
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Syntax Tree-Examples 
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Expression: 

+ 

5 * 

3 4 

• Leaves: identifiers or constants 

• Internal nodes: labelled with  

operations 

• Children: of a node are its  

operands 

if B then S1 else S2  

if - then - else 

Statement: 

B S1 S2 

 
• Node’s label indicates what kind  

of a statement it is 

• Children of a node correspond to  

the components of the statement 
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Constructing Syntax Tree for Expressions 
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• Each node can be implemented as a record with several fields. 

• Operator node: one field identifies the operator (called label of the node) and 

remaining fields contain pointers to operands. 

• The nodes may also contain fields to hold the values (pointers to values) of  

attributes attached to the nodes. 

 
• Functions used to create nodes of syntax tree for expressions with binary  

operator are given below. 

– mknode(op,left,right) 

– mkleaf(id,entry) 

– mkleaf(num,val) 

 
Each function returns a pointer to a newly created node. 
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Constructing Syntax Tree for Expressions- 
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Example: a-4+c 

1.p1:=mkleaf(id,entrya); 

2.p2:=mkleaf(num,4);  3.

  p3:=mknode(-,p1,p2) 

4. p4:=mkleaf(id,entryc); 

5. p5:= mknode(+,p3,p4); 

• The tree is constructed bottom  

up. 

+ 

- id 

id num 4 

to entry for c 

to entry for a 
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A syntax Directed Definition for Constructing  

Syntax Tree 

29 

1. It uses underlying productions of the grammar to schedule the calls of  

the functions mkleaf and mknode to construct the syntax tree 

2. Employment of the synthesized attribute nptr (pointer) for E and T to 

keep track of the pointers returned by the function calls. 

PRODUCTION SEMANTIC RULE 

E  E1 + T  

E  E1 - T 

E  T  

T  (E) 

T  id 

T  num 

E.nptr = mknode(“+”,E1.nptr ,T.nptr)  

E.nptr = mknode(“-”,E1.nptr ,T.nptr)  

E.nptr = T.nptr 

T.nptr = E.nptr 

T.nptr = mkleaf(id, id.lexval) 

T.nptr = mkleaf(num, num.val) 
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29 

E.nptr + T.nptr 

E.nptr - T.nptr 

T.nptr num 

id 

id 
+ 

- 

nu 

m 

id 

id 

Annotated parse tree depicting construction of  

syntax tree for the expression a-4+c 

E.nptr 

Entry for a 

Entry for c 
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S-Attributed Definitions 

1. Syntax-directed definitions are used to specify syntax-directed translations. 

 
2. To create a translator for an arbitrary syntax-directed definition can be difficult. 

 
3. We would like to evaluate the semantic rules during parsing (i.e. in a single pass, we will parse  

and we will also evaluate semantic rules during the parsing). 

 
4. We will look at two sub-classes of the syntax-directed definitions: 

– S-Attributed Definitions: only synthesized attributes used in the syntax-directed 

definitions. 

– All actions occur on the right hand side of the production. 

– L-Attributed Definitions: in addition to synthesized attributes, we may also use inherited  
attributes in a restricted fashion. 

 
1. To implement S-Attributed Definitions and L-Attributed Definitions we can evaluate semantic  

rules in a single pass during the parsing. 

6. Implementations of S-attributed Definitions are a little bit easier than implementations of L-  
Attributed Definitions 
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Bottom-Up Evaluation of S-Attributed Definitions 
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• A translator for an S-attributed definition can often be implemented with the  

help of an LR parser. 

• From an S-attributed definition the parser generator can construct a translator  

that evaluates attributes as it parses the input. 

• We put the values of the synthesized attributes of the grammar symbols a stack  

that has extra fields to hold the values of attributes. 

– The stack is implemented by a pair of arrays val & state 

– If the ith state symbol is A the val[i] will hold the value of the attribute  

associated with the parse tree node corresponding to this A. 
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Bottom-Up Evaluation of S-Attributed Definitions 
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• We evaluate the values of the attributes during reductions. 

A  XYZ A.a=f(X.x,Y.y,Z.z) where all attributes are synthesized. 

state val state val 

top  

 
 top 

• Synthesized attributes are evaluated before each reduction. 

• Before XYZ is reduced to A, the value of Z.z is in val[top], that of Y.y in val[top-1] 

and that of X.x in val[top-2]. 

• After reduction top is decremented by 2. 

• If a symbol has no attribute the corresponding entry in the array is undefined. 

Z Z.z 

Y Y.y 

X X.x 

. . 

A A.a 

. . 
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Bottom-Up Evaluation of S-Attributed Definitions 
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Semantic Rules 

print(val[top-1]) 

val[ntop] = val[top-2] + val[top] 

val[ntop] = val[top-2] * val[top] 

val[ntop] = val[top-1] 

Production 

L → E n 

E → E1 + T 

E → T 

T → T1 * F  

T → F 

F → ( E ) 

F → digit 

1. At each shift of digit, we also push digit.lexval into val-stack. 

2. At all other shifts, we do not put anything into val-stack because other terminals do  

not have attributes (but we increment the stack pointer for val-stack). 
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Bottom-Up Evaluation -- Example 

35 

• At each shift of digit, we also push digit.lexval into val-stack. 

Input state val semantic rule 

5+3*4n - - 

+3*4n 5 5 

+3*4n F 5 F → digit 

+3*4n T 5 T → F 

+3*4 n E 5 E → T 

3*4n E+ 5- 

*4 n E+3 5-3 

*4n E+F 5-3 F → digit 

*4n E+T 5-3 T → F 

4n E+T* 5-3- 

n E+T*4 5-3-4 

n E+T*F 5-3-4 F → digit 

n E+T 5-12 T → T1 * F 

n E 17 E → E1 + T 

En 17- L → E n 

L 17 
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L-Attributed Definitions 

• When translation takes place during parsing, order of evaluation is linked to the order in which  

the nodes of a parse tree are created by parsing method. 

• A natural order can be obtained by applying the procedure dfvisit to the root of a parse tree. 

• We call this evaluation order depth first order. 

• L-attributed definition is a class of syntax directed definition whose attributes can always be  

evaluated in depth first order( L stands for left since attribute information flows from left to  

right). 

 

dfvisit(node n) 

{ 

for each child m of n, from left to right 

{ 

evaluate inherited attributes of m  

dfvisit(m) 

} 

evaluate synthesized attributes of n 

} 
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L-Attributed Definitions 

A syntax-directed definition is L-attributed if each inherited attribute of Xj,  

where 1≤j≤n, on the right side of A → X1X2...Xn depends only on 

1. The attributes of the symbols X1,...,Xj-1 to the left of Xj in the  

production 

2. The inherited attribute of A 

 
Every S-attributed definition is L-attributed, since the restrictions apply only to 

the inherited attributes (not to synthesized attributes). 
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A Definition which is not L-Attributed 

Productions 

A → L M 

Semantic Rules 

L.in=l(A.i) 

M.in=m(L.s) 

A.s=f(M.s) 

A → Q R R.in=r(A.in) 

Q.in=q(R.s) 

A.s=f(Q.s) 

This syntax-directed definition is not L-attributed because the semantic rule Q.in=q(R.s)  

violates the restrictions of L-attributed definitions. 

• When Q.in must be evaluated before we enter to Q because it is an inherited attribute. 

• But the value of Q.in depends on R.s which will be available after we return from R. So,  

we are not be able to evaluate the value of Q.in before we enter to Q. 
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Top-down translation of L-Attributed Definition 

E → T { E’.in = T.val } R { E.val = R.s} 

R → + T { R’.in = E.in + T.val } R’ {R.s = R’.s} 

R → + T { R’.in = E.in - T.val } R’ {R.s = R’.s} 

R → Ɛ { R.s = R.in} 

T → ( E ){ T.val = E.val }  

T → num { T.val = num.val} 
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T.val = 9 R.in = 9 

E.val 

num.val = 9 
- T.val = 5 R.in = 4 

num.val = 5 

+ T.val = 2 R.in = 6 

num.val = 2 Ɛ 

Top-down translation of L-Attributed Definition 
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Translation Schemes 

• In a syntax-directed definition, we do not say anything about the evaluation times of the  

semantic rules (when the semantic rules associated with a production should be  

evaluated). 

• Translation schemes describe the order and timing of attribute computation. 

• A translation scheme is a context-free grammar in which: 

–attributes are associated with the grammar symbols and 

–semantic actions enclosed between braces {} are inserted within the right sides of  

productions. 

Each semantic rule can only use the information compute by already executed semantic  

rules. 

• Ex: A → { ... } X { ... } Y { ... } 

Semantic Actions 
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Translation Schemes for S-attributed Definitions 

• useful notation for specifying translation during parsing. 

• Can have both synthesized and inherited attributes. 

• If our syntax-directed definition is S-attributed, the construction of the corresponding  

translation scheme will be simple. 

• Each associated semantic rule in a S-attributed syntax-directed definition will be inserted  

as a semantic action into the end of the right side of the associated production. 

a production of a syntax directed  

definition 

Production Semantic Rule 

E → E1 + T E.val = E1.val + T.val 

 
⇓ 

E → E1 + T { E.val = E1.val + T.val } the production of the 

corresponding translation scheme 
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A Translation Scheme Example 

•A simple translation scheme that converts infix expressions to the  

corresponding postfix expressions. 

E → T R 

R → + T { print(“+”) } R1  

R → ε 

T → id { print(id.name) }  

a+b+c ab+c+ 

infix expression postfix expression 
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A Translation Scheme Example (cont.) 

E 

T R 

id {print(“a”)} + T 

 
id {print(“b”)} 

{print(“+”)} R 

 
+ T {print(“+”)} R 

 
id {print(“c”)} ε 

The depth first traversal of the parse tree (executing the semantic actions in that order) 

will produce the postfix representation of the infix expression. 
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Inherited Attributes in Translation Schemes 

• If a translation scheme has to contain both synthesized and inherited attributes, we have  

to observe the following rules to ensure that the attribute value is available when an  

action refers to it. 

1.An inherited attribute of a symbol on the right side of a production must be  

computed in a semantic action before that symbol. 

2.A semantic action must not refer to a synthesized attribute of a symbol to the right  

of that semantic action. 

3.A synthesized attribute for the non-terminal on the left can only be computed after  

all attributes it references have been computed (we normally put this semantic action at  

the end of the right side of the production). 

• With a L-attributed syntax-directed definition, it is always possible to construct a  

corresponding translation scheme which satisfies these three conditions (This may not  

be possible for a general syntax-directed translation). 
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Inherited Attributes in Translation Schemes: Example 

S →A1A2 {A1.in=1; A2.in=2} 

A →a { print (A.in)} 

 
 

S 

A2.in=2} 

a {print (A.in)} 

A1 A2 {A1.in=1; 

 
a {print (A.in)} 
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A Translation Scheme with Inherited Attributes 

D → T {L.in = T.type } L  

T → int { T.type = integer }  

T → real { T.type = real } 

L → {L1.in = L.in } L1, id {addtype(id.entry,L.in)}  

L → id {addtype(id.entry,L.in)} 

• This is a translation scheme for an L-attributed definitions 
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INTRODUCTION 

• Intermediate code is the interface between front end  
and back end in a compiler 

• Ideally the details of source language are confined to  
the front end and the details of target machines to the  
back end (a m*n model) 

• In this chapter we study intermediate representations,  
intermediate code generation 

Parser 
Static  

Checker 

Intermediate Code  

Generator 

Code  

Generator 

Front end Back end 
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Variants of syntax trees 

• It is sometimes beneficial to create a DAG  instead of

 tree for  Expressions. 

• This way we can easily show the common sub-expressions 

and  then use that knowledge during code generation 

• Example: a+a*(b-c)+(b-c)*d 

0 + 

 
0 + *  

*  

- 

b c 

a 

d 
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Value-number method for constructing 

DAG’s 

• Algorithm 

– Search the array for a node M with label op, left child l and  
right child r 

– If there is such a node, return the value number M 

– If not create in the array a new node N with label op, left child  
l, and right child r and return its value 

• We may use a hash table 

= 

+ 

10 i 

To entry for i id 
num 10 
+ 1 2 
= 1 3 
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Three address code 

• In a three address code there is at most one  
operator at the right side of an instruction 

• Example: (a + (a *  b-c)) + ((b-c) *  d) 

+ 

+ *  

*  

- 

b c 

a 

d 

t1 = b – c  

t2 = a *  t1  

t3 = a + t2  

t4 = t1 *  d  

t5 = t3 + t4 
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Forms of three address instructions 
x = y op z  

x = op y 

• Assignment  statement : 

• Assignment instruction : 

• Copy statement : x = y 

• Unconditional Jump  : goto L 

• Conditional jump : if x relop y goto L 

• Procedure calls using: 

– param x 

– call p,n 

– y = call p,n 

• Indexed Assignments : x = y[i] and x[i] = y 

• Address & Pointer Assignments : x = &y and x = *y and *x =y 

3/18/2019 PROF. ANAND GHARU 52 



a = t5 

Data structures for three address 
codes 

• Quadruples 

– Has four fields: op, arg1, arg2 and result 

• b *  minus c + b *  minus c 

Three address code 

t1 = minus c  

t2 = b *  t1  

t3 = minus c  

t4 = b *  t3  

t5 = t2 + t4 

op Arg1 Agr2 Result 

minus c t1 

* b t1 t2 

minus c t3 

* b t3 t4 

+ t2 t4 t5 

= t5 a 
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a = t5 

Data structures for three address 
codes 

• Triples 

– Temporaries are not used and instead references to  

instructions are made 
• b *  minus c + b *  minus c 

Three address code 

t1 = minus c  

t2 = b *  t1  

t3 = minus c  

t4 = b *  t3  

t5 = t2 + t4 

op Arg1 Agr2 

minus c 

* b (0)  

Minus c 

* b (2)  

+ (1)  (3)  

= a (4)  

35 

36 

37 

38 

39 

40 
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Data structures for three address 
codes 

• Indirect triples 

– In addition to triples we use a list of pointers to triples 
 
• b *  minus c + b *  minus c 

Three address code 

t1 = minus c  

t2 = b *  t1  

t3 = minus c  

t4 = b *  t3  

t5 = t2 + t4  

a = t5 

op Arg1 Agr2 

minus c 

* b (0)  

Minus c 

* b (2)  

+ (1)  (3)  

= a (4)  

(0) 

(1) 

(2) 

(3) 

(4) 

(5) 

op 

(0)  

(1)  

(2)  

(3)  

(4)  

(5)  

(0) 

(1) 

(2) 

(3) 

(4) 

(5) 
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SDD for Array to Produce TAC 

S-> L: = E {if L.offset = null then 

gen(L.place ‘ := ‘E.place); /* Lis a id*/  

else 

gen(L.place ‘[‘ L.offset’]’ ‘:=‘ E.place); 

} 

E-> E1+ E2 {E.place := newtemp 

gen(E.place ‘ := ‘E1.place+ E2.place); 

} 
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SDD for Array to Produce TAC 

E-> (E1) {E.place := E1.place; } 

 
E-> L {if L.offset = null then 

gen(E.place ‘ := ‘L.place);  

else begin 

E.place :=newtemp( ); 

gen(E.place ‘:=‘L.place ‘[‘ L.offset’]’ ); 
end 

} 

 
L-> id {L.place := id.place;  

L.offset := null; 
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SDD for Array to Produce TAC 

L-> Elist] {L.offset =   newtemp; 

L.place:=newtemp; 

gen(L.place ‘ := ‘c( Elist.array)); 

gen(L.offset ‘:=‘Elist.place ‘*’ width(Elist.array)); } 

 
Elist-> Elist,E {t:= newtemp(); 

m:=Elist.dim + 1; 

gen(t’:=‘ Elist.place * limit(Elist.array,m);  

gen(t’:=‘ t + E.place); 

Elist.array := Elist.array  

Elist.dim : =m;  

Elist.place :=t; 
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SDD for Array to Produce TAC 

Elist-> id [E {Elist.array := id.place; 

Elist.dim : =1;  

Elist.place :=E.place; 

} 
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SDD for Array to Produce TAC 

For Eg: - x:= A[y,z] dimensions 10 * 20 and width  

of A = 4 Produce TAC using SDD of Array to  

produce TAC 



SDD for Array to Produce TAC 

First drawing parse tree we obtain : - 

S 

L := 

id (x) 

E

  

L 

Elist 

id(A) [ 

Elist 

,  

E

  

L 

id(y) 

]  

E

  

L 

id(z) 3/18/2019 PROF. ANAND GHARU 61 



SDD for Array to Produce TAC 

L 

id (x) 

S 

:= E

  

L 

Elist 

id(A) [ 

Elist 

,  

E

  

L 

]  

E

  

L 

id(z) 

 

L-> id has semantic rule  
i.e 
L.offset = null  

L.place =id.place = y 
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SDD for Array to Produce TAC 

L 

id (x) 

S 

:= E

  

L 

Elist 

id(A) [ 

Elist 

,  

E

  

L 

]  

E

  

L 

id(z) 

E-> L has semantic rule i.e 
{if L.offset = null then 

gen(E.place ‘ := ‘L.place); 
else begin  

E.place :=newtemp( ); 
gen(E.place ‘:=‘L.place ‘[‘ L.offset’]’ 

); end 
} 

id(y) 

Now, we have  
L.offset = null  

Thus, 

E.Place : = L.place := y 
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SDD for Array to Produce TAC 

L 

id (x) 

S 

:= E

  

L 

Elist 

id(A) [ 

Elist 

,  

E

  

L 

]  

E

  

L 

id(z) 

 

Elist-> id [E {Elist.array := id.place; 
Elist.dim : =1;  

Elist.place :=E.place; 
} 

id(y) 

Now, we have  
Elist.array = A  

Elist.Place : = y  

Elist.ndim = 1  
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SDD for Array to Produce TAC 

L 

id (x) 

S 

:= E

  

L Elist ] 

Elist , E 

id(A) [ E L 

L id(z) 

 

L-> id has semantic rule  
i.e 
L.offset = null  

L.place =id.place = z 
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SDD for Array to Produce TAC 

L 

id (x) 

S 

:= E

  

L 

Elist 

id(A) [ 

Elist 

,  

E

  

L 

]  

E

  

L 

id(z) 

E-> L has semantic rule i.e 
{if L.offset = null then 

gen(E.place ‘ := ‘L.place); 
else begin  

E.place :=newtemp( ); 
gen(E.place ‘:=‘L.place ‘[‘ L.offset’]’ 

); end 
} 

id(y) 

Now, we have  
L.offset = null  

Thus, 

E.Place : = L.place := z 
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SDD for Array to Produce TAC 

L 

id (x) 

S 

:= E

  

L Elist 

,  

E

  

L 

id(y) 

]  

E

  

L 

id(z) 

Elist-> Elist,E {t:= newtemp(); 
m:=Elist.dim + 1;  

gen(t’:=‘ Elist.place * 
limit(Elist.array,m); 

gen(t’:=‘ t + E.place);  
Elist.array := Elist.array  
Elist.dim : =m;  
Elist.place :=t; 
} 

Now, we have 
t = t1 

m = 1 (Elist.dim) + 1 = 2  

t1 = t1 * 20 (limit(A,2) )  
t1 = t1 + z 

And,  

Elist.array = A 

Elist.dim : = m = 2  

Elist.place = t1 

Elist 

id(A) [ 
From previous,  

Elist.array = A  

Elist.Place : = y  

Elist.ndim = 1  

E.Place : = z 
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SDD for Array to Produce TAC 

L 

id (x) 

S 

:= E

  

L 

Elist 

id(A) [ 

Elist 

,  

E

  

L 

id(y) 

]  

E

  

L 

id(z) 

 
L-> Elist] {L.offset = newtemp; 

L.place:=newtemp;  
gen(L.place ‘ := ‘c( Elist.array));  

gen(L.offset ‘:=‘Elist.place ‘*’ 
width(Elist.array)); } 

Now, we have  
L.place= t2  

L.offset = t3 

t2 = c(A) as Elist.array = A 

t3 =   t1 * 4 as Elist.place = t1  

And width of Elist.array is 4 as  
mentioned before 
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SDD for Array to Produce TAC 

L 

id (x) 

S 

:= E

  

L 

Elist 

id(A) [ 

Elist 

,  

E

  

L 

id(y) 

]  

E

  

L 

id(z) 

E-> L has semantic rule i.e 
{if L.offset = null then 

gen(E.place ‘ := ‘L.place); 
else begin  

E.place :=newtemp( ); 
gen(E.place ‘:=‘L.place ‘[‘ L.offset’]’ 

); end 
} 

Now, we have  
L.offset ≠ null  

Thus, 

E.Place : t4  

t4 = t2 [ t3] 
as L.place= t2  
L.offset = t3 3/18/2019 PROF. ANAND GHARU 69 



SDD for Array to Produce TAC 

L 

id (x) 

S 

:= E

  

L Elist ] 

Elist , E 

id(A) [ E L 

L id(z) 

id(y) 

 

L-> id has semantic rule 
i.e 
L.offset = null  

L.place =id.place = x 
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SDD for Array to Produce TAC 

L 

id (x) 

S 

:= E

  

L 

Elist 

id(A) [ 

Elist 

,  

E

  

L 

id(y) 

]  

E

  

L 

id(z) 

Now , 
L.offset = null  

And L.place = x 

 

Thus, 

 

x = t4 as E.place = t4 

S-> L: = E {if L.offset = null then  
gen(L.place ‘ := ‘E.place); 

/* Lis a id*/ 
else 
gen(L.place ‘[‘ L.offset’]’ ‘:=‘ 

E.place); 
} 

3/18/2019 PROF. ANAND GHARU 71 



SDD for Array to Produce TAC 

Thus, finally the TAC generated  
for 

x = A[y,z] with dimensions 10 
*  20 and width 4 is : 

t1 = y *  20  

t1 = t1 + z;  

t2 = c(A) 

t3 = t1 *  4  

t4 = t2[t3]  

x = t4 

72 
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SDD for Assignments Statements to  
Produce TAC 

S→ id : = E 

E → E1 + E2 

E-> E1 *  E2 

{ p := lookup (id.name)  

if p ≠ NIL then 

gen(p = E.place) 

else 

error /*id not declared */  

} 

{ Eplace := newtemp; 

gen( E.place := E1.place ’+’ E2.place } 

{ Eplace := newtemp; 

gen( E.place := E1.place ’*’ E2.place } 

73 
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SDD for Assignments Statements to  
Produce TAC 

E → - E1 
{ Eplace := newtemp; 

gen( E.place := ‘minus’ E1.place } 

 
E → (E1) 

 

{ Eplace := E1.place } 

E-> id 
{ p := lookup (id.name) 

if p ≠ NIL then 

E.place = p 

else 

error 

} 

Produce TAC for x : = a * b + c * d + e * f 
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SDD for Array to Produce TAC 

Thus, finally the TAC generated  
for 

x = a*b + c* d + e* f 

t1 = a *  b  

t2 = c *  d;  

t3 = t1 + t2  

t4 = e *  f  

t5 = t3 + t4  

x = t5 

75 
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SDD for Boolean Expressions as Arithmetic  
Expressions to Produce TAC 

E → E1 or E2 

E → E1 and E2 

E-> not E1 

E-> (E1 ) 

E->id1 relop id2 

{ Eplace := newtemp; 

E.place := E1.place ’OR’ E2.place } 

{ Eplace := newtemp; 

E.place := E1.place ’AND’ E2.place } 

{ Eplace := newtemp;  

E.place := ‘NOT’ E1.place } 

{E.place:= E1.place; } 

{E.place := newtemp; 

gen(‘if’ id1.place RELOP id2.place ‘goto’ stmt +3 ); 

gen(E.place :=0);  

gen(‘goto’ stmt+2);  

gen(E.place :=1); 

} 

76 
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SDD for Boolean Expressions as Arithmetic  
Expressions to Produce TAC 

{ Eplace := newtemp;  

gen(E.place ‘:= ‘ 1); } 

{ Eplace := newtemp;  

gen(E.place ‘:= ‘ 0); } 

E->true 

 
E->false 

 
 

Produce TAC for 

77 

a or b and c < d and e < f 
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SDD for Boolean Expressions as Arithmetic  
Expressions to Produce TAC 

Thus, finally the TAC generated  
for 

100 : if a < b goto 103  

101 : t1 = 0 

a or b and c < d and e < f 102 : goto 104 

103 : t1 = 1 

104 :if c < d goto 107 

105 : t2 = 0 

106 : goto 108 

107 : t2 = 1 

108 : if e < f goto 111 

109 : t3 = 0 

110 : goto 108 

111 : t3 = 1 

112 : t4 = t2 and t3 

113 : t5 = t1 and t4 
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SDD for Boolean Expressions As 
Control  Flow to Produce 

TAC 
E → E1 or E2 

E → E1 and E2 

E-> not E1 

{ E1.true := E.true;  

E1.false := newlabel;  

E2.true:= E.true;  

E2.false := E.false; 

E.code := E1.code || gen(E1.false,’:’ ) || E2.code } 

{ E1.true := newlabel;  

E1.false := E.false;  

E2.true:= E.true;  

E2.false := E.false; 

E.code := E1.code || gen(E1.true,’:’ ) || E2.code } 

79 

{ E1.true := E.false;  

E1.false := E.true;  

E.code := E1.code } 
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SDD for Boolean Expressions As 
Control  Flow to Produce 

TAC 
E-> (E1 ) 

E->id1 relop id2 

E->true 

E->false 

{ E1.true := E.true;  

E1.false := E.false;  

E.code := E1.code } 

80 

E.Code := gen(‘if’ id1.place relop.op id2.place 
‘goto’ E.true)|| gen(‘goto’ E.false) ) 

E.Code := gen(‘goto’ E.true) 

E.Code := gen(‘goto’ E.false) 
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SDD for Boolean Expressions As 
Control  Flow to Produce 

TAC 
Code for a < b or c < d and e < f 

81 

if a < b goto Ltrue  

goto L1 

L1: if c < d goto L2 

goto Lfalse 

L2: if e < f goto Ltrue  

goto Lfalse 

 

Ltrue:  

Lfalse: 
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S s hort Circuit Evaluation of boolean expression 

• Translate boolean expressions without: 

– generating code for boolean operators 

– evaluating the entire expression 

 
• Flow of control statements  

S → if E then S1 

|  if E then S1 else S2 

|  while E do S1 

Control flow translation of  
boolean expression … 

82 
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E.true 

E.code 
E.false 

E.true 

S1.code 

E.false 

 

 

S → if E then S1 

E.true = newlabel  

E.false = S.next  

S1.next = S.next 

S.code = E.code | |  gen(E.true ':') | |  S1.code 

83 
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S → if E then S1 else S2 

E.true = newlabel 

E.false = newlabel  

S1.next = S.next  

S2.next = S.next  

S.code = E.code | |  

gen(E.true ':') | |  

S1.code | |  

gen(goto S.next) | |   

gen(E.false ':') | |  

S2.code||gen(goto S.next) 

| |  gen(S.next.’:’) 

E.true 

E.true 

E.false 

E.false 

S.next 

 

E.code 

 
S1.code 

goto S.next 

S2.code 

goto S.next 

84 
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S → while E do S1 

S.begin = newlabel  
E.true = newlabel  

E.false = S.next  
S1.next = S.begin 

S.ocde = gen(S.begin ':') | |   
E.code | |  

gen(E.true ':') | |  

S1.code | |  
gen(goto S.begin) | |  

gen(S.next, ‘:’) 

E.true 

E.true 

E.false 

E.false 

S.begin 

E.code 

S1.code 

goto S.begin 

85 
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Flow of Control 

S → while E do S1 

 
S. begin : 

E.code 

if E.place = 0 goto S.after 

S1.code 

goto S.begin  

S.after : 

S.begin := newlabel 

 

S.after := newlabel 

 

S.code := gen(S.begin:) | |   
E.code | |  

gen(if E.place = 0 goto S.after) | |  
S1.code | |  

gen(goto S.begin) | |   

gen(S.after:) 
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Flow of Control … 

S → if E then S1  

else S2 

 
E.code 
if E.place = 0 goto S.else 

S1.code  

goto S.after 

S.else: 

S2.code  

S.after: 

S.else := newlabel 

 

S.after := newlabel 

 
S.code = E.code || 

gen(if E.place = 0 goto S.else) 
|| 

S1.code || 

gen(goto S.after) ||  

gen(S.else :) || 
S2.code || 

gen(S.after :) 
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Example … 
Code for while a < b do 

if c<d then 

x=y+z 

else 

x=y-z 

L1: 

L2: 

L3: 

L4: 

if a < b goto L2  

goto Lnext 

if c < d goto L3  

goto L4 

t1 = Y + Z  

X= t1 

goto S’next  

t1 = Y - Z  X= 

t1 

goto S’next 

S’next : goto L1  

Lnext: 
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FOLLOWING SLIDES NOT IN 
SYLLABUS  2012 …But JUST FOR 

REFERENCE 
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Case Statement 
• switch expression 

begin 

case value: statement  

case value: statement 

…. 

case value: statement  

default: statement 

end 

 

• evaluate the expression 

 
• find which value in the list of cases is the same as the value of the  

expression. 
– Default value matches the expression if none of the 

values explicitly mentioned in the cases matches the expression 

 

• execute the statement associated with the value found 
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Translation 
code to evaluate E into t  

if t <> V1 goto L1 

code for S1 

goto next 

L1 if t <> V2 goto L2  

code for S2 

goto next 

L2: …… 

Ln-2 if t <> Vn-l goto Ln-l 

code for Sn-l  

goto next 

Ln-1: code for Sn  

next: 

code to evaluate E into t  

goto test 

L1: code for S1 

goto next  

L2: code for S2 

goto next 

…… 

Ln: code for Sn 

goto next 

test: if t = V1 goto L1  

if t = V2 goto L2 

…. 

if t = Vn-1 goto Ln-1  

goto Ln 

next: 

Efficient for n-way branch 3/18/2019 PROF. ANAND GHARU 91 
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Back Patching 
• way to implement boolean expressions and flow of control statements in  

one pass 

 

• code is generated as quadruples into an array 

 

• labels are indices into this array 

 

• makelist(i): create a newlist containing only i, return a pointer to the list. 

 
• merge(p1,p2): merge lists pointed to by p1 and p2 and return a pointer to  

the concatenated list 

 
• backpatch(p,i): insert i as the target label for the statements in the list  

pointed to by p 
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Boolean Expressions 
E → E1 or M E2 

|  E1 and M E2 

|  not E1 

|  (E1) 

|  id1 relop id2 

|  true 

|  false  

M → Є 

 
• Insert a marker non terminal M into the grammar to pick up index of next 

quadruple. 

 
• attributes truelist and falselist are used to generate jump code for boolean  

expressions 

 

• incomplete jumps are placed on lists pointed to by E.truelist and E.falselist 
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Boolean expressions … 
• Consider E → E1  and M E2 

 
– if E1 is false then E is also false so statements in E1.falselist  

become part of E.falselist 

 
– if E1 is true then E2 must be tested so target of E1.truelist is  

beginning of E2 

 

– target is obtained by marker M 

 
– attribute M.quad records the number of the first statement  

of E2.code 
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E → E1 or M E2 

backpatch(E1.falselist, M.quad)  

E.truelist = merge(E1.truelist, E2.truelist)  

E.falselist = E2.falselist 

 

E → E1 and M E2 

backpatch(E1.truelist, M.quad)  

E.truelist = E2.truelist 

E.falselist = merge(E1.falselist, E2.falselist) 

 

E → not E1 

E.truelist = E1 falselist  

E.falselist = E1.truelist 

 

E → ( E1 ) 

E.truelist = E1.truelist  

E.falselist = E1.falselist 
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E → id1 relop id2 

E.truelist = makelist(nextquad)  

E.falselist = makelist(nextquad+ 1)  

emit(if id1 relop id2 goto --- )  

emit(goto ---) 

 

E → true 

E.truelist = makelist(nextquad) 

emit(goto ---) 

 

E → false 

E.falselist = makelist(nextquad)  

emit(goto ---) 

 

M → Є 

M.quad = nextquad 
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Generate code for 
a < b or c < d and e < f 

E.t={100,104} 

E.f={103,105} 

E.t={100} 

E.f={101} 
E.t={104} 

E.f={103,105} 
or M.q=102 

Є 

E.t={102} 

E.f={103} 
and M.q=104 E.t ={104} 

E.f={105} 

c d < 

a < b 

Є 

e < f 

Initialize nextquad to 100 

97 

100: if a < b goto - 

101: goto - 

102: if c < d goto -  

103: goto - 

104: if e < f goto -  

105 goto –  

104 

backpatch(102,104)  

backpatch(101,102) 

102 

3/18/2019 PROF. ANAND GHARU 97 



98 

Procedure Calls 

S  call id ( Elist )  

Elist  Elist , E  

Elist  E 

 
• Calling sequence 

– allocate space for activation record 

– evaluate arguments 

– establish environment pointers 

– save status and return address 

– jump to the beginning of the procedure 
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Procedure Calls … 
Example 

 

• parameters are passed by reference 

 

• storage is statically allocated 

 

• use param statement as place holder for the arguments 

 

• called procedure is passed a pointer to the first parameter 

 
• pointers to any argument can be obtained by using proper  

offsets 
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0 

Code Generation 
• Generate three address code needed to evaluate arguments which are  

expressions 
 

• Generate a list of param three address statements 

• Store arguments in a list  

S  call id ( Elist ) 
{ count = 0; 
for each item p on queue do { 

emit('param' p) ; count = count +1; } 
emit('call' id.place,count) 

 

Elist  Elist , E 
append E.place to the end of queue 

 

Elist  E 
initialize queue to contain E.place 
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