
PUNE VIDYARTHI GRIHA’s

COLLEGE OF ENGINEERING,

NASHIK.

0“SYNTAX DIRECTED TRANSLATION”

3/18/2019

PREPARED BY :

PROF. ANAND N. GHARU

ASSISTANT PROFESSOR

COMPUTER DEPARTMENT

SUBJECT – COMPILER (BE COMPUTER SPPU-2019)
1

Syntax-Directed Translation

2 3/18/2019 PROF. ANAND GHARU

Syntax-Directed Translation

3

1. We associate information with the programming language constructs by attaching
attributes to grammar symbols.

2. Values of these attributes are evaluated by the semantic rules associated with the

production rules.

3. Evaluation of these semantic rules:
– may generate intermediate codes

– may put information into the symbol table

– may perform type checking

– may issue error messages

– may perform some other activities

– in fact, they may perform almost any activities.

4. An attribute may hold almost any thing.
– a string, a number, a memory location, a complex record.

3/18/2019 PROF. ANAND GHARU

Syntax-Directed Definitions and Translation Schemes

4

1. When we associate semantic rules with productions, we use two
notations:

– Syntax-Directed Definitions

– Translation Schemes

A. Syntax-Directed Definitions:

– give high-level specifications for translations

– hide many implementation details such as order of evaluation of semantic actions.

– We associate a production rule with a set of semantic actions, and we do not say when they
will be evaluated.

B. Translation Schemes:
– indicate the order of evaluation of semantic actions associated with a production rule.

– In other words, translation schemes give a little bit information about implementation
details.

3/18/2019 PROF. ANAND GHARU

Syntax-Directed Translation

5

• Conceptually with both the syntax directed translation and translation

scheme we

– Parse the input token stream

– Build the parse tree

– Traverse the tree to evaluate the semantic rules at the parse tree nodes.

Input string parse tree dependency graph evaluation order for

semantic rules

Conceptual view of syntax directed translation

3/18/2019 PROF. ANAND GHARU

Syntax-Directed Definitions

6

1. A syntax-directed definition is a generalization of a context-free

grammar in which:

– Each grammar symbol is associated with a set of attributes.

– This set of attributes for a grammar symbol is partitioned into two subsets called

• synthesized and

• inherited attributes of that grammar symbol.

– Each production rule is associated with a set of semantic rules.

2. The value of an attribute at a parse tree node is defined by the semantic rule

associated with a production at that node.

3. The value of a synthesized attribute at a node is computed from the values of

attributes at the children in that node of the parse tree

4. The value of an inherited attribute at a node is computed from the values of

attributes at the siblings and parent of that node of the parse tree

3/18/2019 PROF. ANAND GHARU

Syntax-Directed Definitions

7

Examples:

Synthesized attribute : E→E1+E2

Inherited attribute :A→XYZ

{ E.val =E1.val + E2.val}

{Y.val = 2 * A.val}

1. Semantic rules set up dependencies between attributes which can be

represented by a dependency graph.

2. This dependency graph determines the evaluation order of these

semantic rules.

3. Evaluation of a semantic rule defines the value of an attribute. But a

semantic rule may also have some side effects such as printing a value.
3/18/2019 PROF. ANAND GHARU

Annotated Parse Tree

8

1. A parse tree showing the values of attributes at each node is called

an annotated parse tree.

2. Values of Attributes in nodes of annotated parse-tree are either,

– initialized to constant values or by the lexical analyzer.

– determined by the semantic-rules.

3. The process of computing the attributes values at the nodes is called

annotating (or decorating) of the parse tree.

4. Of course, the order of these computations depends on the

dependency graph induced by the semantic rules.

3/18/2019 PROF. ANAND GHARU

Syntax-Directed Definition

9

In a syntax-directed definition, each production A→α is associated

with a set of semantic rules of the form:

b=f(c1,c2,…,cn)

where f is a function and b can be one of the followings:

 b is a synthesized attribute of A and c1,c2,…,cn are attributes of the

grammar symbols in the production (A→α).

OR

 b is an inherited attribute one of the grammar symbols in α (on the

right side of the production), and c1,c2,…,cn are attributes of the

grammar symbols in the production (A→α).

3/18/2019 PROF. ANAND GHARU

Attribute Grammar

10

• So, a semantic rule b=f(c1,c2,…,cn) indicates that the attribute b

depends on attributes c1,c2,…,cn.

• In a syntax-directed definition, a semantic rule may just evaluate

a value of an attribute or it may have some side effects such as

printing values.

• An attribute grammar is a syntax-directed definition in which the

functions in the semantic rules cannot have side effects (they can only

evaluate values of attributes).

3/18/2019 PROF. ANAND GHARU

Syntax-Directed Definition -- Example

11

Production
L → E n

E → E1 + T

E → T

T → T1 * F

T → F

F → (E)

F → digit

Semantic Rules
print(E.val)

E.val = E1.val + T.val

E.val = T.val

T.val = T1.val * F.val

T.val = F.val

F.val = E.val

F.val = digit.lexval

1. Symbols E, T, and F are associated with a synthesized attribute val.

2. The token digit has a synthesized attribute lexval (it is assumed that it is evaluated by

the lexical analyzer).

3. Terminals are assumed to have synthesized attributes only. Values for attributes of

terminals are usually supplied by the lexical analyzer.

4. The start symbol does not have any inherited attribute unless otherwise stated.
3/18/2019 PROF. ANAND GHARU

S-attributed definition

12

• A syntax directed translation that uses synthesized attributes exclusively

is said to be a S-attributed definition.

• A parse tree for a S-attributed definition can be annotated by evaluating

the semantic rules for the attributes at each node, bottom up from leaves

to the root.

3/18/2019 PROF. ANAND GHARU

Draw the Tree Example 3*5+4n

digit

lexval =3
digit

lexval =5

digit

lexval =4 + *

n
F val=3 F val=5

F val=4

T val=3

T val=15
T val=4

L

E val=19

Print(19)

E val=15

3/18/2019 PROF. ANAND GHARU 13

Dependency Graph

14

Input: 3*5+4 L

E.val=19 n

E.val=15 + T.val=4

digit.lexval=5 F.val=3

digit.lexval=3

T.val=15

T.val=3 * F.val=5

F.val=4

digit.lexval=4

3/18/2019 PROF. ANAND GHARU

Inherited attributes

15

• An inherited value at a node in a parse tree is defined in terms of

attributes at the parent and/or siblings of the node.

• Convenient way for expressing the dependency of a programming

language construct on the context in which it appears.

• We can use inherited attributes to keep track of whether an identifier

appears on the left or right side of an assignment to decide whether the

address or value of the assignment is needed.

• Example: The inherited attribute distributes type information to the

various identifiers in a declaration.
3/18/2019 PROF. ANAND GHARU

Syntax-Directed Definition – Inherited Attributes

16

Production

D → T L

T → int

T → real

L → L1 id

L → id

Semantic Rules

L.in = T.type

T.type = integer

T.type = real

L1.in = L.in, addtype(id.entry,L.in)

addtype(id.entry,L.in)

1. Symbol T is associated with a synthesized attribute type.

2. Symbol L is associated with an inherited attribute in.

3/18/2019 PROF. ANAND GHARU

Annotated parse tree

17

Input: real p,q,r

parse tree

D

T L

real L , id3

L , id2

id1 id

entry=id2

id

entry=id3

L

in=real

T

type=real

D

real
id

entry=id1

L

in=real

L

in=real

addtype(id1,real)

addtype(id2,real)

addtype(id3,real)

3/18/2019 PROF. ANAND GHARU

Dependency Graph

18

• Directed Graph

• Shows interdependencies between attributes.

• If an attribute b at a node depends on an attribute c, then the semantic rule for b at that

node must be evaluated after the semantic rule that defines c.

• Construction:

– Put each semantic rule into the form b=f(c1,…,ck) by introducing dummy

synthesized attribute b for every semantic rule that consists of a procedure call.

– E.g.,

• L E n

• Becomes:

print(E.val)

dummy = print(E.val)

– The graph has a node for each attribute and an edge to the node for b from the

node for c if attribute b depends on attribute c.

3/18/2019 PROF. ANAND GHARU

Dependency Graph Construction

19

for each node n in the parse tree do

for each attribute a of the grammar symbol at n do

construct a node in the dependency graph for a

for each node n in the parse tree do

for each semantic rule b = f(c1,…,cn)

associated with the production used at n do

for i= 1 to n do

construct an edge from

the node for ci to the node for b

3/18/2019 PROF. ANAND GHARU

Dependency Graph Construction

20

• Example

• Production

E→E1 + E2

Semantic Rule

E.val = E1.val + E2.val

E . val

E1. val + E2 . Val

• E.val is synthesized from E1.val and E2.val

• The dotted lines represent the parse tree that is not part of the

dependency graph.

3/18/2019 PROF. ANAND GHARU

Dependency Graph

21

D → T L

T → int

T → real

L → L1 id

L.in = T.type

T.type = integer

T.type = real

L1.in = L.in,

addtype(id.entry,L.in)

L → id addtype(id.entry,L.in)

3/18/2019 PROF. ANAND GHARU

Evaluation Order

22

• A topological sort of a directed acyclic graph is any ordering

m1,m2…mk of the nodes of the graph such that edges go from nodes

earlier in the ordering to later nodes.

. i.e if there is an edge from mi to mj them mi appears before mj in the ordering

• Any topological sort of dependency graph gives a valid order for

evaluation of semantic rules associated with the nodes of the parse tree.

• The dependent attributes c1,c2….ck in b=f(c1,c2….ck) must be available before f

is evaluated.

• Translation specified by Syntax Directed Definition

• Input string parse tree dependency graph evaluation order for

semantic rules
3/18/2019 PROF. ANAND GHARU

Evaluation Order

23

• a4=real;

• a5=a4;

• addtype(id3.entry,a5);

• a7=a5;

• addtype(id2.entry,a7);

• a9=a7;

• addtype(id1.entry,a5);

3/18/2019 PROF. ANAND GHARU

Evaluating Semantic Rules

24

• Parse Tree methods

– At compile time evaluation order obtained from the topological sort of dependency

graph.

– Fails if dependency graph has a cycle

• Rule Based Methods

– Semantic rules analyzed by hand or specialized tools at compiler construction

time

– Order of evaluation of attributes associated with a production is pre-determined at

compiler construction time

• Oblivious Methods

– Evaluation order is chosen without considering the semantic rules.

– Restricts the class of syntax directed definitions that can be implemented.

– If translation takes place during parsing order of evaluation is forced by parsing

method.

3/18/2019 PROF. ANAND GHARU

Syntax Trees

25

Syntax-Tree

– an intermediate representation of the compiler’s input.

– A condensed form of the parse tree.

– Syntax tree shows the syntactic structure of the program while

omitting irrelevant details.

– Operators and keywords are associated with the interior nodes.

– Chains of simple productions are collapsed.

Syntax directed translation can be based on syntax tree as well as

parse tree.

3/18/2019 PROF. ANAND GHARU

Syntax Tree-Examples

26

Expression:

+

5 *

3 4

• Leaves: identifiers or constants

• Internal nodes: labelled with

operations

• Children: of a node are its

operands

if B then S1 else S2

if - then - else

Statement:

B S1 S2

• Node’s label indicates what kind

of a statement it is

• Children of a node correspond to

the components of the statement

3/18/2019 PROF. ANAND GHARU

Constructing Syntax Tree for Expressions

27

• Each node can be implemented as a record with several fields.

• Operator node: one field identifies the operator (called label of the node) and

remaining fields contain pointers to operands.

• The nodes may also contain fields to hold the values (pointers to values) of

attributes attached to the nodes.

• Functions used to create nodes of syntax tree for expressions with binary

operator are given below.

– mknode(op,left,right)

– mkleaf(id,entry)

– mkleaf(num,val)

Each function returns a pointer to a newly created node.

3/18/2019 PROF. ANAND GHARU

Constructing Syntax Tree for Expressions-

28

Example: a-4+c

1.p1:=mkleaf(id,entrya);

2.p2:=mkleaf(num,4); 3.

 p3:=mknode(-,p1,p2)

4. p4:=mkleaf(id,entryc);

5. p5:= mknode(+,p3,p4);

• The tree is constructed bottom

up.

+

- id

id num 4

to entry for c

to entry for a

3/18/2019 PROF. ANAND GHARU

A syntax Directed Definition for Constructing

Syntax Tree

29

1. It uses underlying productions of the grammar to schedule the calls of

the functions mkleaf and mknode to construct the syntax tree

2. Employment of the synthesized attribute nptr (pointer) for E and T to

keep track of the pointers returned by the function calls.

PRODUCTION SEMANTIC RULE

E E1 + T

E E1 - T

E T

T (E)

T id

T num

E.nptr = mknode(“+”,E1.nptr ,T.nptr)

E.nptr = mknode(“-”,E1.nptr ,T.nptr)

E.nptr = T.nptr

T.nptr = E.nptr

T.nptr = mkleaf(id, id.lexval)

T.nptr = mkleaf(num, num.val)

3/18/2019 PROF. ANAND GHARU

29

E.nptr + T.nptr

E.nptr - T.nptr

T.nptr num

id

id
+

-

nu

m

id

id

Annotated parse tree depicting construction of

syntax tree for the expression a-4+c

E.nptr

Entry for a

Entry for c

3/18/2019 PROF. ANAND GHARU 30

30

S-Attributed Definitions

1. Syntax-directed definitions are used to specify syntax-directed translations.

2. To create a translator for an arbitrary syntax-directed definition can be difficult.

3. We would like to evaluate the semantic rules during parsing (i.e. in a single pass, we will parse

and we will also evaluate semantic rules during the parsing).

4. We will look at two sub-classes of the syntax-directed definitions:

– S-Attributed Definitions: only synthesized attributes used in the syntax-directed

definitions.

– All actions occur on the right hand side of the production.

– L-Attributed Definitions: in addition to synthesized attributes, we may also use inherited
attributes in a restricted fashion.

1. To implement S-Attributed Definitions and L-Attributed Definitions we can evaluate semantic

rules in a single pass during the parsing.

6. Implementations of S-attributed Definitions are a little bit easier than implementations of L-
Attributed Definitions

3/18/2019 PROF. ANAND GHARU 31

Bottom-Up Evaluation of S-Attributed Definitions

32

• A translator for an S-attributed definition can often be implemented with the

help of an LR parser.

• From an S-attributed definition the parser generator can construct a translator

that evaluates attributes as it parses the input.

• We put the values of the synthesized attributes of the grammar symbols a stack

that has extra fields to hold the values of attributes.

– The stack is implemented by a pair of arrays val & state

– If the ith state symbol is A the val[i] will hold the value of the attribute

associated with the parse tree node corresponding to this A.

3/18/2019 PROF. ANAND GHARU

Bottom-Up Evaluation of S-Attributed Definitions

33

• We evaluate the values of the attributes during reductions.

A XYZ A.a=f(X.x,Y.y,Z.z) where all attributes are synthesized.

state val state val

top

 top

• Synthesized attributes are evaluated before each reduction.

• Before XYZ is reduced to A, the value of Z.z is in val[top], that of Y.y in val[top-1]

and that of X.x in val[top-2].

• After reduction top is decremented by 2.

• If a symbol has no attribute the corresponding entry in the array is undefined.

Z Z.z

Y Y.y

X X.x

. .

A A.a

. .

3/18/2019 PROF. ANAND GHARU

Bottom-Up Evaluation of S-Attributed Definitions

34

Semantic Rules

print(val[top-1])

val[ntop] = val[top-2] + val[top]

val[ntop] = val[top-2] * val[top]

val[ntop] = val[top-1]

Production

L → E n

E → E1 + T

E → T

T → T1 * F

T → F

F → (E)

F → digit

1. At each shift of digit, we also push digit.lexval into val-stack.

2. At all other shifts, we do not put anything into val-stack because other terminals do

not have attributes (but we increment the stack pointer for val-stack).

3/18/2019 PROF. ANAND GHARU

Bottom-Up Evaluation -- Example

35

• At each shift of digit, we also push digit.lexval into val-stack.

Input state val semantic rule

5+3*4n - -

+3*4n 5 5

+3*4n F 5 F → digit

+3*4n T 5 T → F

+3*4 n E 5 E → T

3*4n E+ 5-

*4 n E+3 5-3

*4n E+F 5-3 F → digit

*4n E+T 5-3 T → F

4n E+T* 5-3-

n E+T*4 5-3-4

n E+T*F 5-3-4 F → digit

n E+T 5-12 T → T1 * F

n E 17 E → E1 + T

En 17- L → E n

L 17
3/18/2019 PROF. ANAND GHARU

L-Attributed Definitions

• When translation takes place during parsing, order of evaluation is linked to the order in which

the nodes of a parse tree are created by parsing method.

• A natural order can be obtained by applying the procedure dfvisit to the root of a parse tree.

• We call this evaluation order depth first order.

• L-attributed definition is a class of syntax directed definition whose attributes can always be

evaluated in depth first order(L stands for left since attribute information flows from left to

right).

dfvisit(node n)

{

for each child m of n, from left to right

{

evaluate inherited attributes of m

dfvisit(m)

}

evaluate synthesized attributes of n

}

3/18/2019 PROF. ANAND GHARU 36

L-Attributed Definitions

A syntax-directed definition is L-attributed if each inherited attribute of Xj,

where 1≤j≤n, on the right side of A → X1X2...Xn depends only on

1. The attributes of the symbols X1,...,Xj-1 to the left of Xj in the

production

2. The inherited attribute of A

Every S-attributed definition is L-attributed, since the restrictions apply only to

the inherited attributes (not to synthesized attributes).

3/18/2019 PROF. ANAND GHARU 37

A Definition which is not L-Attributed

Productions

A → L M

Semantic Rules

L.in=l(A.i)

M.in=m(L.s)

A.s=f(M.s)

A → Q R R.in=r(A.in)

Q.in=q(R.s)

A.s=f(Q.s)

This syntax-directed definition is not L-attributed because the semantic rule Q.in=q(R.s)

violates the restrictions of L-attributed definitions.

• When Q.in must be evaluated before we enter to Q because it is an inherited attribute.

• But the value of Q.in depends on R.s which will be available after we return from R. So,

we are not be able to evaluate the value of Q.in before we enter to Q.
3/18/2019 PROF. ANAND GHARU 38

Top-down translation of L-Attributed Definition

E → T { E’.in = T.val } R { E.val = R.s}

R → + T { R’.in = E.in + T.val } R’ {R.s = R’.s}

R → + T { R’.in = E.in - T.val } R’ {R.s = R’.s}

R → Ɛ { R.s = R.in}

T → (E){ T.val = E.val }

T → num { T.val = num.val}

3/18/2019 PROF. ANAND GHARU 39

39

T.val = 9 R.in = 9

E.val

num.val = 9
- T.val = 5 R.in = 4

num.val = 5

+ T.val = 2 R.in = 6

num.val = 2 Ɛ

Top-down translation of L-Attributed Definition
3/18/2019 PROF. ANAND GHARU 40

Translation Schemes

• In a syntax-directed definition, we do not say anything about the evaluation times of the

semantic rules (when the semantic rules associated with a production should be

evaluated).

• Translation schemes describe the order and timing of attribute computation.

• A translation scheme is a context-free grammar in which:

–attributes are associated with the grammar symbols and

–semantic actions enclosed between braces {} are inserted within the right sides of

productions.

Each semantic rule can only use the information compute by already executed semantic

rules.

• Ex: A → { ... } X { ... } Y { ... }

Semantic Actions

3/18/2019 PROF. ANAND GHARU 41

Translation Schemes for S-attributed Definitions

• useful notation for specifying translation during parsing.

• Can have both synthesized and inherited attributes.

• If our syntax-directed definition is S-attributed, the construction of the corresponding

translation scheme will be simple.

• Each associated semantic rule in a S-attributed syntax-directed definition will be inserted

as a semantic action into the end of the right side of the associated production.

a production of a syntax directed

definition

Production Semantic Rule

E → E1 + T E.val = E1.val + T.val

⇓

E → E1 + T { E.val = E1.val + T.val } the production of the

corresponding translation scheme

3/18/2019 PROF. ANAND GHARU 42

A Translation Scheme Example

•A simple translation scheme that converts infix expressions to the

corresponding postfix expressions.

E → T R

R → + T { print(“+”) } R1

R → ε

T → id { print(id.name) }

a+b+c ab+c+

infix expression postfix expression

3/18/2019 PROF. ANAND GHARU 43

A Translation Scheme Example (cont.)

E

T R

id {print(“a”)} + T

id {print(“b”)}

{print(“+”)} R

+ T {print(“+”)} R

id {print(“c”)} ε

The depth first traversal of the parse tree (executing the semantic actions in that order)

will produce the postfix representation of the infix expression.

3/18/2019 PROF. ANAND GHARU 44

Inherited Attributes in Translation Schemes

• If a translation scheme has to contain both synthesized and inherited attributes, we have

to observe the following rules to ensure that the attribute value is available when an

action refers to it.

1.An inherited attribute of a symbol on the right side of a production must be

computed in a semantic action before that symbol.

2.A semantic action must not refer to a synthesized attribute of a symbol to the right

of that semantic action.

3.A synthesized attribute for the non-terminal on the left can only be computed after

all attributes it references have been computed (we normally put this semantic action at

the end of the right side of the production).

• With a L-attributed syntax-directed definition, it is always possible to construct a

corresponding translation scheme which satisfies these three conditions (This may not

be possible for a general syntax-directed translation).

3/18/2019 PROF. ANAND GHARU 45

Inherited Attributes in Translation Schemes: Example

S →A1A2 {A1.in=1; A2.in=2}

A →a { print (A.in)}

S

A2.in=2}

a {print (A.in)}

A1 A2 {A1.in=1;

a {print (A.in)}

3/18/2019 PROF. ANAND GHARU 46

A Translation Scheme with Inherited Attributes

D → T {L.in = T.type } L

T → int { T.type = integer }

T → real { T.type = real }

L → {L1.in = L.in } L1, id {addtype(id.entry,L.in)}

L → id {addtype(id.entry,L.in)}

• This is a translation scheme for an L-attributed definitions

3/18/2019 PROF. ANAND GHARU 47

INTRODUCTION

• Intermediate code is the interface between front end
and back end in a compiler

• Ideally the details of source language are confined to
the front end and the details of target machines to the
back end (a m*n model)

• In this chapter we study intermediate representations,
intermediate code generation

Parser
Static

Checker

Intermediate Code

Generator

Code

Generator

Front end Back end
3/18/2019 PROF. ANAND GHARU 48

Variants of syntax trees

• It is sometimes beneficial to create a DAG instead of

 tree for Expressions.

• This way we can easily show the common sub-expressions

and then use that knowledge during code generation

• Example: a+a*(b-c)+(b-c)*d

0 +

0 + *

*

-

b c

a

d

3/18/2019 PROF. ANAND GHARU 49

Value-number method for constructing

DAG’s

• Algorithm

– Search the array for a node M with label op, left child l and
right child r

– If there is such a node, return the value number M

– If not create in the array a new node N with label op, left child
l, and right child r and return its value

• We may use a hash table

=

+

10 i

To entry for i id
num 10
+ 1 2
= 1 3

3/18/2019 PROF. ANAND GHARU 50

Three address code

• In a three address code there is at most one
operator at the right side of an instruction

• Example: (a + (a * b-c)) + ((b-c) * d)

+

+ *

*

-

b c

a

d

t1 = b – c

t2 = a * t1

t3 = a + t2

t4 = t1 * d

t5 = t3 + t4

3/18/2019 PROF. ANAND GHARU 51

Forms of three address instructions
x = y op z

x = op y

• Assignment statement :

• Assignment instruction :

• Copy statement : x = y

• Unconditional Jump : goto L

• Conditional jump : if x relop y goto L

• Procedure calls using:

– param x

– call p,n

– y = call p,n

• Indexed Assignments : x = y[i] and x[i] = y

• Address & Pointer Assignments : x = &y and x = *y and *x =y

3/18/2019 PROF. ANAND GHARU 52

a = t5

Data structures for three address
codes

• Quadruples

– Has four fields: op, arg1, arg2 and result

• b * minus c + b * minus c

Three address code

t1 = minus c

t2 = b * t1

t3 = minus c

t4 = b * t3

t5 = t2 + t4

op Arg1 Agr2 Result

minus c t1

* b t1 t2

minus c t3

* b t3 t4

+ t2 t4 t5

= t5 a

3/18/2019 PROF. ANAND GHARU 53

a = t5

Data structures for three address
codes

• Triples

– Temporaries are not used and instead references to

instructions are made
• b * minus c + b * minus c

Three address code

t1 = minus c

t2 = b * t1

t3 = minus c

t4 = b * t3

t5 = t2 + t4

op Arg1 Agr2

minus c

* b (0)

Minus c

* b (2)

+ (1) (3)

= a (4)

35

36

37

38

39

40
3/18/2019 PROF. ANAND GHARU 54

Data structures for three address
codes

• Indirect triples

– In addition to triples we use a list of pointers to triples

• b * minus c + b * minus c

Three address code

t1 = minus c

t2 = b * t1

t3 = minus c

t4 = b * t3

t5 = t2 + t4

a = t5

op Arg1 Agr2

minus c

* b (0)

Minus c

* b (2)

+ (1) (3)

= a (4)

(0)

(1)

(2)

(3)

(4)

(5)

op

(0)

(1)

(2)

(3)

(4)

(5)

(0)

(1)

(2)

(3)

(4)

(5)
3/18/2019 PROF. ANAND GHARU 55

SDD for Array to Produce TAC

S-> L: = E {if L.offset = null then

gen(L.place ‘ := ‘E.place); /* Lis a id*/

else

gen(L.place ‘[‘ L.offset’]’ ‘:=‘ E.place);

}

E-> E1+ E2 {E.place := newtemp

gen(E.place ‘ := ‘E1.place+ E2.place);

}

3/18/2019 PROF. ANAND GHARU 56

SDD for Array to Produce TAC

E-> (E1) {E.place := E1.place; }

E-> L {if L.offset = null then

gen(E.place ‘ := ‘L.place);

else begin

E.place :=newtemp();

gen(E.place ‘:=‘L.place ‘[‘ L.offset’]’);
end

}

L-> id {L.place := id.place;

L.offset := null;

} 3/18/2019 PROF. ANAND GHARU 57

SDD for Array to Produce TAC

L-> Elist] {L.offset = newtemp;

L.place:=newtemp;

gen(L.place ‘ := ‘c(Elist.array));

gen(L.offset ‘:=‘Elist.place ‘*’ width(Elist.array)); }

Elist-> Elist,E {t:= newtemp();

m:=Elist.dim + 1;

gen(t’:=‘ Elist.place * limit(Elist.array,m);

gen(t’:=‘ t + E.place);

Elist.array := Elist.array

Elist.dim : =m;

Elist.place :=t;

} 3/18/2019 PROF. ANAND GHARU 58

SDD for Array to Produce TAC

Elist-> id [E {Elist.array := id.place;

Elist.dim : =1;

Elist.place :=E.place;

}

3/18/2019 PROF. ANAND GHARU 59

SDD for Array to Produce TAC

For Eg: - x:= A[y,z] dimensions 10 * 20 and width

of A = 4 Produce TAC using SDD of Array to

produce TAC

SDD for Array to Produce TAC

First drawing parse tree we obtain : -

S

L :=

id (x)

E

L

Elist

id(A) [

Elist

,

E

L

id(y)

]

E

L

id(z) 3/18/2019 PROF. ANAND GHARU 61

SDD for Array to Produce TAC

L

id (x)

S

:= E

L

Elist

id(A) [

Elist

,

E

L

]

E

L

id(z)

L-> id has semantic rule
i.e
L.offset = null

L.place =id.place = y

id(y) 3/18/2019 PROF. ANAND GHARU 62

SDD for Array to Produce TAC

L

id (x)

S

:= E

L

Elist

id(A) [

Elist

,

E

L

]

E

L

id(z)

E-> L has semantic rule i.e
{if L.offset = null then

gen(E.place ‘ := ‘L.place);
else begin

E.place :=newtemp();
gen(E.place ‘:=‘L.place ‘[‘ L.offset’]’

); end
}

id(y)

Now, we have
L.offset = null

Thus,

E.Place : = L.place := y

3/18/2019 PROF. ANAND GHARU 63

SDD for Array to Produce TAC

L

id (x)

S

:= E

L

Elist

id(A) [

Elist

,

E

L

]

E

L

id(z)

Elist-> id [E {Elist.array := id.place;
Elist.dim : =1;

Elist.place :=E.place;
}

id(y)

Now, we have
Elist.array = A

Elist.Place : = y

Elist.ndim = 1

3/18/2019 PROF. ANAND GHARU 64

SDD for Array to Produce TAC

L

id (x)

S

:= E

L Elist]

Elist , E

id(A) [E L

L id(z)

L-> id has semantic rule
i.e
L.offset = null

L.place =id.place = z

id(y) 3/18/2019 PROF. ANAND GHARU 65

SDD for Array to Produce TAC

L

id (x)

S

:= E

L

Elist

id(A) [

Elist

,

E

L

]

E

L

id(z)

E-> L has semantic rule i.e
{if L.offset = null then

gen(E.place ‘ := ‘L.place);
else begin

E.place :=newtemp();
gen(E.place ‘:=‘L.place ‘[‘ L.offset’]’

); end
}

id(y)

Now, we have
L.offset = null

Thus,

E.Place : = L.place := z

3/18/2019 PROF. ANAND GHARU 66

SDD for Array to Produce TAC

L

id (x)

S

:= E

L Elist

,

E

L

id(y)

]

E

L

id(z)

Elist-> Elist,E {t:= newtemp();
m:=Elist.dim + 1;

gen(t’:=‘ Elist.place *
limit(Elist.array,m);

gen(t’:=‘ t + E.place);
Elist.array := Elist.array
Elist.dim : =m;
Elist.place :=t;
}

Now, we have
t = t1

m = 1 (Elist.dim) + 1 = 2

t1 = t1 * 20 (limit(A,2))
t1 = t1 + z

And,

Elist.array = A

Elist.dim : = m = 2

Elist.place = t1

Elist

id(A) [
From previous,

Elist.array = A

Elist.Place : = y

Elist.ndim = 1

E.Place : = z

3/18/2019 PROF. ANAND GHARU 67

SDD for Array to Produce TAC

L

id (x)

S

:= E

L

Elist

id(A) [

Elist

,

E

L

id(y)

]

E

L

id(z)

L-> Elist] {L.offset = newtemp;

L.place:=newtemp;
gen(L.place ‘ := ‘c(Elist.array));

gen(L.offset ‘:=‘Elist.place ‘*’
width(Elist.array)); }

Now, we have
L.place= t2

L.offset = t3

t2 = c(A) as Elist.array = A

t3 = t1 * 4 as Elist.place = t1

And width of Elist.array is 4 as
mentioned before

3/18/2019 PROF. ANAND GHARU 68

SDD for Array to Produce TAC

L

id (x)

S

:= E

L

Elist

id(A) [

Elist

,

E

L

id(y)

]

E

L

id(z)

E-> L has semantic rule i.e
{if L.offset = null then

gen(E.place ‘ := ‘L.place);
else begin

E.place :=newtemp();
gen(E.place ‘:=‘L.place ‘[‘ L.offset’]’

); end
}

Now, we have
L.offset ≠ null

Thus,

E.Place : t4

t4 = t2 [t3]
as L.place= t2
L.offset = t3 3/18/2019 PROF. ANAND GHARU 69

SDD for Array to Produce TAC

L

id (x)

S

:= E

L Elist]

Elist , E

id(A) [E L

L id(z)

id(y)

L-> id has semantic rule
i.e
L.offset = null

L.place =id.place = x

3/18/2019 PROF. ANAND GHARU 70

SDD for Array to Produce TAC

L

id (x)

S

:= E

L

Elist

id(A) [

Elist

,

E

L

id(y)

]

E

L

id(z)

Now ,
L.offset = null

And L.place = x

Thus,

x = t4 as E.place = t4

S-> L: = E {if L.offset = null then
gen(L.place ‘ := ‘E.place);

/* Lis a id*/
else
gen(L.place ‘[‘ L.offset’]’ ‘:=‘

E.place);
}

3/18/2019 PROF. ANAND GHARU 71

SDD for Array to Produce TAC

Thus, finally the TAC generated
for

x = A[y,z] with dimensions 10
* 20 and width 4 is :

t1 = y * 20

t1 = t1 + z;

t2 = c(A)

t3 = t1 * 4

t4 = t2[t3]

x = t4

72

3/18/2019 PROF. ANAND GHARU 72

SDD for Assignments Statements to
Produce TAC

S→ id : = E

E → E1 + E2

E-> E1 * E2

{ p := lookup (id.name)

if p ≠ NIL then

gen(p = E.place)

else

error /*id not declared */

}

{ Eplace := newtemp;

gen(E.place := E1.place ’+’ E2.place }

{ Eplace := newtemp;

gen(E.place := E1.place ’*’ E2.place }

73

3/18/2019 PROF. ANAND GHARU 73

73

SDD for Assignments Statements to
Produce TAC

E → - E1
{ Eplace := newtemp;

gen(E.place := ‘minus’ E1.place }

E → (E1)

{ Eplace := E1.place }

E-> id
{ p := lookup (id.name)

if p ≠ NIL then

E.place = p

else

error

}

Produce TAC for x : = a * b + c * d + e * f
3/18/2019 PROF. ANAND GHARU 74

SDD for Array to Produce TAC

Thus, finally the TAC generated
for

x = a*b + c* d + e* f

t1 = a * b

t2 = c * d;

t3 = t1 + t2

t4 = e * f

t5 = t3 + t4

x = t5

75

3/18/2019 PROF. ANAND GHARU 75

SDD for Boolean Expressions as Arithmetic
Expressions to Produce TAC

E → E1 or E2

E → E1 and E2

E-> not E1

E-> (E1)

E->id1 relop id2

{ Eplace := newtemp;

E.place := E1.place ’OR’ E2.place }

{ Eplace := newtemp;

E.place := E1.place ’AND’ E2.place }

{ Eplace := newtemp;

E.place := ‘NOT’ E1.place }

{E.place:= E1.place; }

{E.place := newtemp;

gen(‘if’ id1.place RELOP id2.place ‘goto’ stmt +3);

gen(E.place :=0);

gen(‘goto’ stmt+2);

gen(E.place :=1);

}

76

3/18/2019 PROF. ANAND GHARU 76

SDD for Boolean Expressions as Arithmetic
Expressions to Produce TAC

{ Eplace := newtemp;

gen(E.place ‘:= ‘ 1); }

{ Eplace := newtemp;

gen(E.place ‘:= ‘ 0); }

E->true

E->false

Produce TAC for

77

a or b and c < d and e < f

3/18/2019 PROF. ANAND GHARU 77

78

SDD for Boolean Expressions as Arithmetic
Expressions to Produce TAC

Thus, finally the TAC generated
for

100 : if a < b goto 103

101 : t1 = 0

a or b and c < d and e < f 102 : goto 104

103 : t1 = 1

104 :if c < d goto 107

105 : t2 = 0

106 : goto 108

107 : t2 = 1

108 : if e < f goto 111

109 : t3 = 0

110 : goto 108

111 : t3 = 1

112 : t4 = t2 and t3

113 : t5 = t1 and t4

3/18/2019 PROF. ANAND GHARU 78

SDD for Boolean Expressions As
Control Flow to Produce

TAC
E → E1 or E2

E → E1 and E2

E-> not E1

{ E1.true := E.true;

E1.false := newlabel;

E2.true:= E.true;

E2.false := E.false;

E.code := E1.code || gen(E1.false,’:’) || E2.code }

{ E1.true := newlabel;

E1.false := E.false;

E2.true:= E.true;

E2.false := E.false;

E.code := E1.code || gen(E1.true,’:’) || E2.code }

79

{ E1.true := E.false;

E1.false := E.true;

E.code := E1.code }

3/18/2019 PROF. ANAND GHARU 79

SDD for Boolean Expressions As
Control Flow to Produce

TAC
E-> (E1)

E->id1 relop id2

E->true

E->false

{ E1.true := E.true;

E1.false := E.false;

E.code := E1.code }

80

E.Code := gen(‘if’ id1.place relop.op id2.place
‘goto’ E.true)|| gen(‘goto’ E.false))

E.Code := gen(‘goto’ E.true)

E.Code := gen(‘goto’ E.false)

3/18/2019 PROF. ANAND GHARU 80

SDD for Boolean Expressions As
Control Flow to Produce

TAC
Code for a < b or c < d and e < f

81

if a < b goto Ltrue

goto L1

L1: if c < d goto L2

goto Lfalse

L2: if e < f goto Ltrue

goto Lfalse

Ltrue:

Lfalse:

3/18/2019 PROF. ANAND GHARU 81

S s hort Circuit Evaluation of boolean expression

• Translate boolean expressions without:

– generating code for boolean operators

– evaluating the entire expression

• Flow of control statements

S → if E then S1

| if E then S1 else S2

| while E do S1

Control flow translation of
boolean expression …

82

3/18/2019 PROF. ANAND GHARU 82

E.true

E.code
E.false

E.true

S1.code

E.false

S → if E then S1

E.true = newlabel

E.false = S.next

S1.next = S.next

S.code = E.code | | gen(E.true ':') | | S1.code

83

3/18/2019 PROF. ANAND GHARU 83

S → if E then S1 else S2

E.true = newlabel

E.false = newlabel

S1.next = S.next

S2.next = S.next

S.code = E.code | |

gen(E.true ':') | |

S1.code | |

gen(goto S.next) | |

gen(E.false ':') | |

S2.code||gen(goto S.next)

| | gen(S.next.’:’)

E.true

E.true

E.false

E.false

S.next

E.code

S1.code

goto S.next

S2.code

goto S.next

84

3/18/2019 PROF. ANAND GHARU 84

S → while E do S1

S.begin = newlabel
E.true = newlabel

E.false = S.next
S1.next = S.begin

S.ocde = gen(S.begin ':') | |
E.code | |

gen(E.true ':') | |

S1.code | |
gen(goto S.begin) | |

gen(S.next, ‘:’)

E.true

E.true

E.false

E.false

S.begin

E.code

S1.code

goto S.begin

85

3/18/2019 PROF. ANAND GHARU 85

86

Flow of Control

S → while E do S1

S. begin :

E.code

if E.place = 0 goto S.after

S1.code

goto S.begin

S.after :

S.begin := newlabel

S.after := newlabel

S.code := gen(S.begin:) | |
E.code | |

gen(if E.place = 0 goto S.after) | |
S1.code | |

gen(goto S.begin) | |

gen(S.after:)

3/18/2019 PROF. ANAND GHARU 86

87

Flow of Control …

S → if E then S1

else S2

E.code
if E.place = 0 goto S.else

S1.code

goto S.after

S.else:

S2.code

S.after:

S.else := newlabel

S.after := newlabel

S.code = E.code ||

gen(if E.place = 0 goto S.else)
||

S1.code ||

gen(goto S.after) ||

gen(S.else :) ||
S2.code ||

gen(S.after :)

3/18/2019 PROF. ANAND GHARU 87

88

Example …
Code for while a < b do

if c<d then

x=y+z

else

x=y-z

L1:

L2:

L3:

L4:

if a < b goto L2

goto Lnext

if c < d goto L3

goto L4

t1 = Y + Z

X= t1

goto S’next

t1 = Y - Z X=

t1

goto S’next

S’next : goto L1

Lnext:

3/18/2019 PROF. ANAND GHARU 88

FOLLOWING SLIDES NOT IN
SYLLABUS 2012 …But JUST FOR

REFERENCE

3/18/2019 PROF. ANAND GHARU 89

89

Case Statement
• switch expression

begin

case value: statement

case value: statement

….

case value: statement

default: statement

end

• evaluate the expression

• find which value in the list of cases is the same as the value of the

expression.
– Default value matches the expression if none of the

values explicitly mentioned in the cases matches the expression

• execute the statement associated with the value found

3/18/2019 PROF. ANAND GHARU 90

90

Translation
code to evaluate E into t

if t <> V1 goto L1

code for S1

goto next

L1 if t <> V2 goto L2

code for S2

goto next

L2: ……

Ln-2 if t <> Vn-l goto Ln-l

code for Sn-l

goto next

Ln-1: code for Sn

next:

code to evaluate E into t

goto test

L1: code for S1

goto next

L2: code for S2

goto next

……

Ln: code for Sn

goto next

test: if t = V1 goto L1

if t = V2 goto L2

….

if t = Vn-1 goto Ln-1

goto Ln

next:

Efficient for n-way branch 3/18/2019 PROF. ANAND GHARU 91

92

Back Patching
• way to implement boolean expressions and flow of control statements in

one pass

• code is generated as quadruples into an array

• labels are indices into this array

• makelist(i): create a newlist containing only i, return a pointer to the list.

• merge(p1,p2): merge lists pointed to by p1 and p2 and return a pointer to

the concatenated list

• backpatch(p,i): insert i as the target label for the statements in the list

pointed to by p

3/18/2019 PROF. ANAND GHARU 92

93

Boolean Expressions
E → E1 or M E2

| E1 and M E2

| not E1

| (E1)

| id1 relop id2

| true

| false

M → Є

• Insert a marker non terminal M into the grammar to pick up index of next

quadruple.

• attributes truelist and falselist are used to generate jump code for boolean

expressions

• incomplete jumps are placed on lists pointed to by E.truelist and E.falselist

3/18/2019 PROF. ANAND GHARU 93

94

Boolean expressions …
• Consider E → E1 and M E2

– if E1 is false then E is also false so statements in E1.falselist

become part of E.falselist

– if E1 is true then E2 must be tested so target of E1.truelist is

beginning of E2

– target is obtained by marker M

– attribute M.quad records the number of the first statement

of E2.code

3/18/2019 PROF. ANAND GHARU 94

95

E → E1 or M E2

backpatch(E1.falselist, M.quad)

E.truelist = merge(E1.truelist, E2.truelist)

E.falselist = E2.falselist

E → E1 and M E2

backpatch(E1.truelist, M.quad)

E.truelist = E2.truelist

E.falselist = merge(E1.falselist, E2.falselist)

E → not E1

E.truelist = E1 falselist

E.falselist = E1.truelist

E → (E1)

E.truelist = E1.truelist

E.falselist = E1.falselist

3/18/2019 PROF. ANAND GHARU 95

96

E → id1 relop id2

E.truelist = makelist(nextquad)

E.falselist = makelist(nextquad+ 1)

emit(if id1 relop id2 goto ---)

emit(goto ---)

E → true

E.truelist = makelist(nextquad)

emit(goto ---)

E → false

E.falselist = makelist(nextquad)

emit(goto ---)

M → Є

M.quad = nextquad

3/18/2019 PROF. ANAND GHARU 96

Generate code for
a < b or c < d and e < f

E.t={100,104}

E.f={103,105}

E.t={100}

E.f={101}
E.t={104}

E.f={103,105}
or M.q=102

Є

E.t={102}

E.f={103}
and M.q=104 E.t ={104}

E.f={105}

c d <

a < b

Є

e < f

Initialize nextquad to 100

97

100: if a < b goto -

101: goto -

102: if c < d goto -

103: goto -

104: if e < f goto -

105 goto –

104

backpatch(102,104)

backpatch(101,102)

102

3/18/2019 PROF. ANAND GHARU 97

98

Procedure Calls

S call id (Elist)

Elist Elist , E

Elist E

• Calling sequence

– allocate space for activation record

– evaluate arguments

– establish environment pointers

– save status and return address

– jump to the beginning of the procedure

3/18/2019 PROF. ANAND GHARU 98

99

Procedure Calls …
Example

• parameters are passed by reference

• storage is statically allocated

• use param statement as place holder for the arguments

• called procedure is passed a pointer to the first parameter

• pointers to any argument can be obtained by using proper

offsets

3/18/2019 PROF. ANAND GHARU 99

10

0

Code Generation
• Generate three address code needed to evaluate arguments which are

expressions

• Generate a list of param three address statements

• Store arguments in a list

S call id (Elist)
{ count = 0;
for each item p on queue do {

emit('param' p) ; count = count +1; }
emit('call' id.place,count)

Elist Elist , E
append E.place to the end of queue

Elist E
initialize queue to contain E.place

3/18/2019 PROF. ANAND GHARU 100

My Blog : anandgharu.wordpress.com

THANK YOU!!!!!!!!!!

3/18/2019
PROF. ANAND GHARU

101

