PUNE VIDYARTHI GRIHA's OLLEGE OF ENGINEERING, NASHIK.

O"SYNTAX DIRECTED TRANSLATION"

PREPARED BY:

PROF. ANAND N. GHARU
ASSISTANT PROFESSOR

COMPUTER DEPARTMENT

Syntax-Directed Translation

Syntax-Directed Translation

1. We associate information with the programming language constructs by attaching attributes to grammar symbols.
2. Values of these attributes are evaluated by the semantic rules associated with the production rules.
3. Evaluation of these semantic rules:

- may generate intermediate codes
- may put information into the symbol table
- may perform type checking
- may issue error messages
- may perform some other activities
- in fact, they may perform almost any activities.

4. An attribute may hold almost any thing.

- a string, a number, a memory location, a complex record.

Syntax-Directed Definitions and Translation Schemes

1. When we associate semantic rules with productions, we use two notations:

- Syntax-Directed Definitions
- Translation Schemes

A. Syntax-Directed Definitions:

- give high-level specifications for translations
- hide many implementation details such as order of evaluation of semantic actions.
- We associate a production rule with a set of semantic actions, and we do not say when they will be evaluated.

B. Translation Schemes:

- indicate the order of evaluation of semantic actions associated with a production rule.
- In other words, translation schemes give a little bit information about implementation details.
3/18/2019

Syntax-Directed Translation

- Conceptually with both the syntax directed translation and translation scheme we
- Parse the input token stream
- Build the parse tree
- Traverse the tree to evaluate the semantic rules at the parse tree nodes.

Input string \longrightarrow parse tree \longrightarrow dependency graph \longrightarrow evaluation order for semantic rules

Conceptual view of syntax directed translation

Syntax-Directed Definitions

1. A syntax-directed definition is a generalization of a context-free grammar in which:

- Each grammar symbol is associated with a set of attributes.
- This set of attributes for a grammar symbol is partitioned into two subsets called
- synthesized and
- inherited attributes of that grammar symbol.
- Each production rule is associated with a set of semantic rules.

2. The value of an attribute at a parse tree node is defined by the semantic rule associated with a production at that node.
3. The value of a synthesized attribute at a node is computed from the values of attributes at the children in that node of the parse tree
4. The value of an inherited attribute at a node is computed from the values of attributes at the siblings and parent of that node of the parse tree

Syntax-Directed Definitions

Examples:
Synthesized attribute : $\mathrm{E} \rightarrow \mathrm{E} 1+\mathrm{E} 2$

$$
\{\text { E.val =E1.val }+ \text { E2.val }\}
$$

$$
\text { Inherited attribute } \quad: \mathrm{A} \rightarrow \mathrm{XYZ} \quad\{\mathrm{Y} . \mathrm{val}=2 * \mathrm{~A} . \mathrm{val}\}
$$

1. Semantic rules set up dependencies between attributes which can be represented by a dependency graph.
2. This dependency graph determines the evaluation order of these semantic rules.
3. Evaluation of a semantic rule defines the value of an attribute. But a $\underset{18 / 2019}{\text { semantic rule may also have some side effects such as printing a value. }}$

Annotated Parse Tree

1. A parse tree showing the values of attributes at each node is called an annotated parse tree.
2. Values of Attributes in nodes of annotated parse-tree are either,

- initialized to constant values or by the lexical analyzer.
- determined by the semantic-rules.

3. The process of computing the attributes values at the nodes is called annotating (or decorating) of the parse tree.
4. Of course, the order of these computations depends on the dependency graph induced by the semantic rules.

Syntax-Directed Definition

In a syntax-directed definition, each production $A \rightarrow \alpha$ is associated with a set of semantic rules of the form:

$$
b=f\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

where f is a function and b can be one of the followings:
$\rightarrow b$ is a synthesized attribute of A and $c_{1}, c_{2}, \ldots, c_{n}$ are attributes of the grammar symbols in the production ($\mathrm{A} \rightarrow \alpha$).

OR

$\rightarrow b$ is an inherited attribute one of the grammar symbols in α (on the right side of the production), and $c_{1}, c_{2}, \ldots, c_{n}$ are attributes of the grammar symbols in the production ($\mathrm{A} \rightarrow \alpha$).

Attribute Grammar

- So, a semantic rule $b=f\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ indicates that the attribute b depends on attributes $c_{1}, c_{2}, \ldots, c_{n}$.
- In a syntax-directed definition, a semantic rule may just evaluate a value of an attribute or it may have some side effects such as printing values.
- An attribute grammar is a syntax-directed definition in which the functions in the semantic rules cannot have side effects (they can only evaluate values of attributes).

Syntax-Directed Definition -- Example

Production

$\mathrm{L} \rightarrow \mathrm{En}$
$\mathrm{E} \rightarrow \mathrm{E}_{1}+\mathrm{T}$
$\mathrm{E} \rightarrow \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T}_{1} * \mathrm{~F}$
$\mathrm{T} \rightarrow \mathrm{F}$
$\mathrm{F} \rightarrow$ (E)
$\mathrm{F} \rightarrow$ digit

Semantic Rules

print(E.val)
E.val $=\mathrm{E}_{1} \cdot \mathrm{val}+\mathrm{T} . \mathrm{val}$
E.val = T.val
T.val $=\mathrm{T}_{1} \cdot$ val $*$ F.val
T.val = F.val
F.val = E.val
F.val = digit.lexval

1. Symbols E, T, and F are associated with a synthesized attribute val.
2. The token digit has a synthesized attribute lexval (it is assumed that it is evaluated by the lexical analyzer).
3. Terminals are assumed to have synthesized attributes only. Values for attributes of terminals are usually supplied by the lexical analyzer.
4. The start symbol does not have any inherited attribute unless otherwise stated.

S-attributed definition

- A syntax directed translation that uses synthesized attributes exclusively is said to be a S -attributed definition.
- A parse tree for a S-attributed definition can be annotated by evaluating the semantic rules for the attributes at each node, bottom up from leaves to the root.

Dependency Graph

Input: $3 * 5+4$

digit.lexval=3

Inherited attributes

- An inherited value at a node in a parse tree is defined in terms of attributes at the parent and/or siblings of the node.
- Convenient way for expressing the dependency of a programming language construct on the context in which it appears.
- We can use inherited attributes to keep track of whether an identifier appears on the left or right side of an assignment to decide whether the address or value of the assignment is needed.
- Example: The inherited attribute distributes type information to the various identifiers in a declaration.

Syntax-Directed Definition - Inherited Attributes

Production

$\mathrm{D} \rightarrow \mathrm{T} \mathrm{L}$
$\mathrm{T} \rightarrow$ int
$\mathrm{T} \rightarrow$ real
$\mathrm{L} \rightarrow \mathrm{L}_{1} \mathbf{i d}$
$\mathrm{L} \rightarrow$ id

Semantic Rules

L.in = T.type
T.type $=$ integer
T.type = real
L_{1}. in $=$ L.in, addtype(id.entry,L.in)
addtype(id.entry,L.in)

1. Symbol T is associated with a synthesized attribute type.
2. Symbol L is associated with an inherited attribute in.

Annotated parse tree

Dependency Graph

- Directed Graph
- Shows interdependencies between attributes.
- If an attribute b at a node depends on an attribute c , then the semantic rule for b at that node must be evaluated after the semantic rule that defines c .
- Construction:
- Put each semantic rule into the form $\mathrm{b}=\mathrm{f}\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}\right)$ by introducing dummy synthesized attribute b for every semantic rule that consists of a procedure call.
- E.g.,
- L \rightarrow En print(E.val)
- Becomes: dummy =print(E.val)
- The graph has a node for each attribute and an edge to the node for b from the node for c if attribute b depends on attribute c .

Dependency Graph Construction

for each node n in the parse tree do
for each attribute a of the grammar symbol at n do construct a node in the dependency graph for a
for each node n in the parse tree do
for each semantic rule $b=f\left(c_{l}, \ldots, c_{n}\right)$ associated with the production used at n do

$$
\text { for } \mathrm{i}=1 \text { to } \mathrm{n} \text { do }
$$

construct an edge from the node for c_{i} to the node for b

Dependency Graph Construction

- Example
- Production $\mathrm{E} \rightarrow \mathrm{E} 1+\mathrm{E} 2$

Semantic Rule
E.val $=\mathrm{E} 1 . \mathrm{val}+\mathrm{E} 2 . \mathrm{val}$

- E.val is synthesized from E1.val and E2.val
- The dotted lines represent the parse tree that is not part of the dependency graph.

Dependency Graph

$\mathrm{D} \rightarrow \mathrm{T} \mathrm{L}$	L.in = T.type
$\mathrm{T} \rightarrow$ int	T.type = integer
$\mathrm{T} \rightarrow$ real	T.type = real
$\mathrm{L} \rightarrow \mathrm{L}_{1}$ id	L_{1}. in = L.in, addtype(id.entry,L.in)
$\mathrm{L} \rightarrow$ id	addtype(id.entry,L.in)

Evaluation Order

- A topological sort of a directed acyclic graph is any ordering $\mathrm{m} 1, \mathrm{~m} 2 \ldots \mathrm{mk}$ of the nodes of the graph such that edges go from nodes earlier in the ordering to later nodes.
. i.e if there is an edge from m_{i} to m_{j} them m_{i} appears before m_{j} in the ordering
- Any topological sort of dependency graph gives a valid order for evaluation of semantic rules associated with the nodes of the parse tree.
- The dependent attributes $\mathrm{c} 1, \mathrm{c} 2 \ldots . . \mathrm{ck}$ in $\mathrm{b}=\mathrm{f}(\mathrm{c} 1, \mathrm{c} 2 . \ldots . \mathrm{ck})$ must be available before f is evaluated.
- Translation specified by Syntax Directed Definition
- Input string \longrightarrow parse tree \longrightarrow dependency graph \longrightarrow evaluation order for semantic rules

Evaluation Order

- $\mathrm{a} 4=\mathrm{real}$;
- $\quad \mathrm{a} 5=\mathrm{a} 4$;
- addtype(id3.entry,a5);
- \quad 7 $7=a 5$;
- addtype(id2.entry,a7);
- $a 9=a 7$;
- addtype(id1.entry,a5);

Figure 5.9: Dependency graph for a declaration float $\mathrm{id}_{1}, \mathrm{id}_{2}, \mathrm{id}_{3}$

Evaluating Semantic Rules

- Parse Tree methods
- At compile time evaluation order obtained from the topological sort of dependency graph.
- Fails if dependency graph has a cycle
- Rule Based Methods
- Semantic rules analyzed by hand or specialized tools at compiler construction time
- Order of evaluation of attributes associated with a production is pre-determined at compiler construction time
- Oblivious Methods
- Evaluation order is chosen without considering the semantic rules.
- Restricts the class of syntax directed definitions that can be implemented.
- If translation takes place during parsing order of evaluation is forced by parsing method.

Syntax Trees

Syntax-Tree

- an intermediate representation of the compiler's input.
- A condensed form of the parse tree.
- Syntax tree shows the syntactic structure of the program while omitting irrelevant details.
- Operators and keywords are associated with the interior nodes.
- Chains of simple productions are collapsed.

Syntax directed translation can be based on syntax tree as well as parse tree.

Syntax Tree-Examples

Expression:

- Leaves: identifiers or constants
- Internal nodes: labelled with operations
if B then S1 else S2

Statement:

- Node's label indicates what kind of a statement it is
- Children of a node correspond to the components of the statement
- Children: of a node are its

Constructing Syntax Tree for Expressions

- Each node can be implemented as a record with several fields.
- Operator node: one field identifies the operator (called label of the node) and remaining fields contain pointers to operands.
- The nodes may also contain fields to hold the values (pointers to values) of attributes attached to the nodes.
- Functions used to create nodes of syntax tree for expressions with binary operator are given below.
- mknode(op,left,right)
- mkleaf(id,entry)
- mkleaf(num,val)

Each function returns a pointer to a newly created node.

Constructing Syntax Tree for Expressions-

Example: a-4+c
1.p1:=mkleaf(id,entrya);
2.p2:=mkleaf(num,4); 3.
p3:=mknode(-,p1,p2)
4. $\mathrm{p} 4:=\mathrm{mkleaf}(\mathrm{id}$, entryc $)$;
5. $\mathrm{p} 5:=$ mknode $(+, \mathrm{p} 3, \mathrm{p} 4)$;

- The tree is constructed bottom

to entry for a up.

A syntax Directed Definition for Constructing

1. It uses underlying productions of the gSyntaxo Tdrecule the calls of the functions mkleaf and mknode to construct the syntax tree
2. Employment of the synthesized attribute nptr (pointer) for E and T to keep track of the pointers returned by the function calls.

PRODUCTION SEMANTIC RULE

$\mathrm{E} \rightarrow \mathrm{E}_{1}+\mathbf{T}$
$\mathrm{E} \rightarrow \mathrm{E}_{1}-\mathbf{T}$
$\mathbf{E} \rightarrow \mathbf{T}$
$\mathbf{T} \rightarrow(\mathbf{E})$
T \rightarrow id
$T \rightarrow$ num
E.nptr $=$ mknode("+", E_{1}. nptr , T.nptr)
E.nptr $=$ mknode("-", E_{1}.nptr ,T.nptr)
E.nptr = T.nptr
T.nptr $=$ E.nptr
T.nptr $=$ mkleaf(id, id.lexval)
T.nptr $=m k l e a f(n u m$, num.val $)$

Annotated parse tree depicting construction of syntax tree for the expression a-4+c

S-Attributed Definitions

1. Syntax-directed definitions are used to specify syntax-directed translations.
2. To create a translator for an arbitrary syntax-directed definition can be difficult.
3. We would like to evaluate the semantic rules during parsing (i.e. in a single pass, we will parse and we will also evaluate semantic rules during the parsing).
4. We will look at two sub-classes of the syntax-directed definitions:

- S-Attributed Definitions: only synthesized attributes used in the syntax-directed definitions.
- All actions occur on the right hand side of the production.
- L-Attributed Definitions: in addition to synthesized attributes, we may also use inherited attributes in a restricted fashion.

1. To implement S-Attributed Definitions and L-Attributed Definitions we can evaluate semantic rules in a single pass during the parsing.
2. 3 Implementations of S-attributed Defionignsane ablithe bit easier than implementations of Attributed Definitions

Bottom-Up Evaluation of S-Attributed Definitions

- A translator for an S-attributed definition can often be implemented with the help of an LR parser.
- From an S-attributed definition the parser generator can construct a translator that evaluates attributes as it parses the input.
- We put the values of the synthesized attributes of the grammar symbols a stack that has extra fields to hold the values of attributes.
- The stack is implemented by a pair of arrays val \& state
- If the $\mathrm{i}^{\text {th }}$ state symbol is A the val[i] will hold the value of the attribute associated with the parse tree node corresponding to this A.

Bottom-Up Evaluation of S-Attributed Definitions

- We evaluate the values of the attributes during reductions.
$\mathrm{A} \rightarrow \mathrm{XYZ} \quad$ A. $\mathrm{a}=\mathrm{f}(\mathrm{X} . \mathrm{x}, \mathrm{Y} . \mathrm{y}, \mathrm{Z.z}$) where all attributes are synthesized.

top \rightarrow| Z | Z.z |
| :---: | :---: |
| Y | Y.y |
| X | X.x |
| . | . |

\rightarrow top \rightarrow| | |
| :---: | :---: |
| | |
| | |
| | A |
| | A.a |
| | . |

- Synthesized attributes are evaluated before each reduction.
- Before XYZ is reduced to A, the value of Z.z is in val[top], that of Y.y in val[top-1] and that of X.x in val[top-2].
- After reduction top is decremented by 2 .
- If a symbol has no attribute the corresponding entry in the array is undefined.

Bottom-Up Evaluation of S-Attributed Definitions

Production

$\mathrm{L} \rightarrow \mathrm{En}$
$\mathrm{E} \rightarrow \mathrm{E}_{1}+\mathrm{T}$
$\mathrm{E} \rightarrow \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T}_{1} * \mathrm{~F}$
$\mathrm{T} \rightarrow \mathrm{F}$
$\mathrm{F} \rightarrow$ (E)
$\mathrm{F} \rightarrow$ digit

Semantic Rules

$\operatorname{print}($ val[top-1])
$\operatorname{val}[$ ntop $]=\operatorname{val}[$ top-2] $+\operatorname{val}[$ top $]$
$\operatorname{val}[$ ntop $]=\operatorname{val}[$ top- 2$] * \operatorname{val}[$ top $]$
$\operatorname{val}[$ ntop $]=\operatorname{val}[$ top -1$]$

1. At each shift of digit, we also push digit.lexval into val-stack.
2. At all other shifts, we do not put anything into val-stack because other terminals do not have attributes (but we increment the stack pointer for val-stack).

Bottom-Up Evaluation -- Example

- At each shift of digit, we also push digit.lexval into val-stack.

$\underline{\text { Input }} 5$	$\underline{\text { state }}$	$\underline{\text { val }}$	$\underline{\text { semantic rule }}$
$5+3 * 4 \mathrm{n}$	-	-	
$+3 * 4 \mathrm{n}$	5	5	$\mathrm{~F} \rightarrow$ digit
$+3 * 4 \mathrm{n}$	F	5	$\mathrm{~T} \rightarrow \mathrm{~F}$
$+3 * 4 \mathrm{n}$	T	5	$\mathrm{E} \rightarrow \mathrm{T}$
$+3 * 4 \mathrm{n}$	E	5	
$3 * 4 \mathrm{n}$	$\mathrm{E}+$	$5-$	$\mathrm{F} \rightarrow$ digit
$* 4 \mathrm{n}$	$\mathrm{E}+3$	$5-3$	$\mathrm{~T} \rightarrow \mathrm{~F}$
$* 4 \mathrm{n}$	$\mathrm{E}+\mathrm{F}$	$5-3$	
$* 4 \mathrm{n}$	$\mathrm{E}+\mathrm{T}$	$5-3$	$\mathrm{~F} \rightarrow$ digit
4 n	$\mathrm{E}+\mathrm{T}^{*}$	$5-3-$	$\mathrm{T} \rightarrow \mathrm{T}_{1} * \mathrm{~F}$
n	$\mathrm{E}+\mathrm{T}^{*} 4$	$5-3-4$	$\mathrm{E} \rightarrow \mathrm{E}_{1}+\mathrm{T}$
n	$\mathrm{E}+\mathrm{T}^{*} \mathrm{~F}$	$5-3-4$	$\mathrm{~L} \rightarrow \mathrm{En}$
n	$\mathrm{E}+\mathrm{T}$	$5-12$	
n	E	17	$17-$
	En	17	

L-Attributed Definitions

- When translation takes place during parsing, order of evaluation is linked to the order in which the nodes of a parse tree are created by parsing method.
- A natural order can be obtained by applying the procedure $d f v i s i t$ to the root of a parse tree.
- We call this evaluation order depth first order.
- L-attributed definition is a class of syntax directed definition whose attributes can always be evaluated in depth first order(L stands for left since attribute information flows from left to right).

```
dfvisit(node n)
{
    for each child m of n, from left to right
    {
    evaluate inherited attributes of m
    dfvisit(m)
}
evaluate synthesized attributes of n
}
```


L-Attributed Definitions

A syntax-directed definition is \mathbf{L}-attributed if each inherited attribute of X_{j}, where $1 \leq j \leq n$, on the right side of $A \rightarrow X_{1} X_{2} \ldots X_{n}$ depends only on 1. The attributes of the symbols $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{j}-1}$ to the left of X_{j} in the production
2. The inherited attribute of A

Every S-attributed definition is L-attributed, since the restrictions apply only to the inherited attributes (not to synthesized attributes).

A Definition which is not L-Attributed

Productions Semantic Rules
$\mathrm{A} \rightarrow \mathrm{L} M \quad$ L.in=l(A.i)
M.in=m(L.s)
A.s=f(M.s)
$\mathrm{A} \rightarrow \mathrm{Q} R \quad$ R.in $=\mathrm{r}(\mathrm{A} . i n)$
Q.in $=q(R . s)$
A. $s=f(Q . s)$

This syntax-directed definition is not L -attributed because the semantic rule $\mathrm{Q} . \mathrm{in}=\mathrm{q}$ (R.s) violates the restrictions of L -attributed definitions.

- When Q.in must be evaluated before we enter to Q because it is an inherited attribute.
- But the value of Q.in depends on R.s which will be available after we return from R. So, we are not be able to evaluate the value of Q .in before we enter to Q .

Top-down translation of L-Attributed Definition

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}\left\{\mathrm{E}^{\prime} . \mathrm{in}=\mathrm{T} . \mathrm{val}\right\} \mathrm{R}\{\mathrm{E} . \mathrm{val}=\mathrm{R} . \mathrm{s}\} \\
& R \rightarrow+T\left\{R^{\prime} . i n=E . i n+T . v a l\right\} R^{\prime}\{R . s=R ' . s\} \\
& R \rightarrow+T \text { \{ R'.in }=\text { E.in - T.val \} R' }\{\text { R.s }=\text { R'.s }\} \\
& \mathrm{R} \rightarrow \mathcal{E}\{\text { R.s = R.in\} } \\
& \mathrm{T} \rightarrow(\mathrm{E})\{\text { T.val }=\text { E.val }\} \\
& \mathrm{T} \rightarrow \text { num }\{\mathrm{T} . \mathrm{val}=\text { num.val }\}
\end{aligned}
$$

Top-down translation of L-Attributed Definition

Translation Schemes

- In a syntax-directed definition, we do not say anything about the evaluation times of the semantic rules (when the semantic rules associated with a production should be evaluated).
- Translation schemes describe the order and timing of attribute computation.
- A translation scheme is a context-free grammar in which:
-attributes are associated with the grammar symbols and
-semantic actions enclosed between braces \{\} are inserted within the right sides of productions.
Each semantic rule can only use the information compute by already executed semantic rules.
- Ex: $\mathrm{A} \rightarrow\{\ldots\} \mathrm{X}\{\ldots\} \mathrm{Y}\{\ldots\}$

Translation Schemes for \mathbf{S}-attributed Definitions

- useful notation for specifying translation during parsing.
- Can have both synthesized and inherited attributes.
- If our syntax-directed definition is S -attributed, the construction of the corresponding translation scheme will be simple.
- Each associated semantic rule in a S-attributed syntax-directed definition will be inserted as a semantic action into the end of the right side of the associated production.

Production Semantic Rule

$$
\begin{array}{ll}
\mathrm{E} \rightarrow \mathrm{E} 1+\mathrm{T} \quad \text { E.val = E1.val + T.val } & \begin{array}{l}
\text { a production of a syntax directed } \\
\text { definition }
\end{array} \\
\Downarrow & \\
\mathrm{E} \rightarrow \mathrm{E} 1+\mathrm{T}\{\mathrm{E} . \mathrm{val}=\mathrm{E} 1 . v a l+\mathrm{T} . \mathrm{val}\} & \begin{array}{l}
\text { the production of the } \\
\text { corresponding translation scheme }
\end{array}
\end{array}
$$

A Translation Scheme Example

- A simple translation scheme that converts infix expressions to the corresponding postfix expressions.
$\mathrm{E} \rightarrow \mathrm{T}$ R
$\mathrm{R} \rightarrow+\mathrm{T}\left\{\operatorname{print}\left({ }^{("+")}\right\} \mathrm{R} 1\right.$
$\mathrm{R} \rightarrow \varepsilon$
$\mathrm{T} \rightarrow \mathbf{i d}\{\operatorname{print}(\mathbf{i d}$. name $)\}$

infix expression postfix expression

A Translation Scheme Example (cont.)

The depth first traversal of the parse tree (executing the semantic actions in that order) will produce the postfix representation of the infix expression.

Inherited Attributes in Translation Schemes

- If a translation scheme has to contain both synthesized and inherited attributes, we have to observe the following rules to ensure that the attribute value is available when an action refers to it.

1. An inherited attribute of a symbol on the right side of a production must be computed in a semantic action before that symbol.
2.A semantic action must not refer to a synthesized attribute of a symbol to the right of that semantic action.
3.A synthesized attribute for the non-terminal on the left can only be computed after all attributes it references have been computed (we normally put this semantic action at the end of the right side of the production).

- With a L-attributed syntax-directed definition, it is always possible to construct a corresponding translation scheme which satisfies these three conditions (This may not be possible for a general syntax-directed translation).

Inherited Attributes in Translation Schemes: Example

$\mathrm{S} \rightarrow \mathrm{A}_{1} \mathrm{~A}_{2} \quad\left\{\mathrm{~A}_{1} \mathrm{in}=1 ; \quad \mathrm{A}_{2} . \mathrm{in}=2\right\}$
$\mathrm{A} \rightarrow \mathrm{a}$ \{print (A.in) $\}$

A Translation Scheme with Inherited Attributes

$\mathrm{D} \rightarrow \mathrm{T}\{$ L.in $=$ T.type $\} \mathrm{L}$
$\mathrm{T} \rightarrow$ int $\{$ T.type $=$ integer $\}$
$\mathrm{T} \rightarrow$ real $\{$ T.type $=$ real $\}$
$\mathrm{L} \rightarrow$ \{L1.in $=\mathrm{L}$. in $\}$ L1, id \{addtype(id.entry,L.in) $\}$
$\mathrm{L} \rightarrow$ id \{addtype(id.entry,L.in) $\}$

- This is a translation scheme for an L-attributed definitions

INTRODUCTION

- Intermediate code is the interface between front end and back end in a compiler
- Ideally the details of source language are confined to the front end and the details of target machines to the back end (a m*n model)
- In this chapter we study intermediate representations, intermediate code generation

Variants of syntaxtrees

- It is sometimes beneficial to create a DAG instead of tree for Expressions.
- This way we can easily show the common sub-expressions and then use that knowledge during code generation
- Example: $\mathrm{a}+\mathrm{a}^{*}(\mathrm{~b}-\mathrm{c})+(\mathrm{b}-\mathrm{c})^{*} \mathrm{~d}$

Value-number method for constructing DAG's

- Algorithm
- Search the array for a node M with label op, left child land right child r
- If there is such a node, return the value number M
- If not create in the array a new node Nwith label op, left child l, and right child r and return its value
- We may use a hash table

Three address code

- In a three address code there is at mostone operator at the right side ofan instruction
- Example: $(a+(a * b-c))+\left((b-c)^{*} d\right)$

$$
\begin{aligned}
& \mathrm{t} 1=\mathrm{b}-\mathrm{c} \\
& \mathrm{t} 2=\mathrm{a}^{*} \mathrm{t} 1 \\
& \mathrm{t} 3=\mathrm{a}+\mathrm{t} 2 \\
& \mathrm{t} 4=\mathrm{t} 1^{*} \mathrm{~d} \\
& \mathrm{t} 5=\mathrm{t} 3+\mathrm{t} 4
\end{aligned}
$$

Forms of three addressinstructions

- Assignment statement : $\mathrm{x}=\mathrm{y} 0 \mathrm{opz}$
- Assignment instruction : $\mathrm{x}=\mathrm{op} \mathrm{y}$
- Copy statement : x=y
- Unconditional Jump : goto L
- Conditional jump : if x relop y gotoL
- Procedure calls using:
- paramx
- call p,n
- $y=$ call p, n
- Indexed Assignments : $x=y[i]$ and $x[i]=y$
- Address \& Pointer Assignments : $x=\& y$ and $x={ }^{*} y$ and ${ }^{*} x=y$

Data structures for three address

 codes- Quadruples
- Hasfour fields: op, arg1, arg2 and result
- b^{*} minus $c+b$ * minus c

op	Arg1	Agr2	Result
minus	c		t1
$*$	b	t1	t2
minus	c		t3
$*$	b	t3	t4
+	t2	t4	t5
$=$	t5		a

Three address code
t1 = minus c
t2 $=b^{*}$ t1
t3 $=$ minus c
t4 =b* t3
$\mathrm{t} 5=\mathrm{t} 2+\mathrm{t} 4$

Data structures for three address

 codes- Triples
- Temporaries are not used and instead references to instructions are made
- b^{*} minus $c+b^{*}$ minus c

	op	Arg1	Agr2	Three address code
35	minus	c		$\mathrm{t} 1=\mathrm{minus} \mathrm{C}$
36	*	b	(0)	$\dagger 2=\mathrm{b}$ * $\dagger 1$
37	Minus	c		
38	*	b	(2)	t3 = minus c
39	+	(1)	(3)	t4 $=$ b * t3
3/18/2019	=	a	PROF. ${ }^{(4)}$ NAND GHARU	$\mathrm{t} 5=\mathrm{t} 2+\mathrm{t} 4$

Data structures for three address

 codes- Indirect triples
- In addition to triples we use a list of pointers to triples
- b^{*} minus $\mathrm{c}+\mathrm{b}$ * minus c

	op		op	Arg	Agr2	Three address code
(0)	(0)	(0)	minus	c		
(1)	(1)	(1)	*	b	(0)	t2 $=\mathrm{b}^{\text {* }}$ t1
(2)	(2)	(2)	Minus	c		
(3)	(3)	(3)	*	b	(2)	t3 $=$ minus c
(4)	(4)	(4)	+	(1)	(3)	t4 $=\mathrm{b}^{*}$ t3
(5)	3/18(5) ${ }^{(519}$	(5)	=	Prof. ${ }^{\text {A }}$	$A R^{(4)}$	$\begin{aligned} & \mathrm{t} 5=\mathrm{t} 2+\mathrm{t} 4 \\ & \mathrm{a}=\mathrm{t} 5 \end{aligned}$

SDDfor Array to Produce TAC

S-> L: = E \quad if L.offset = null then
gen(L.place ' :='E.place); /* Lis a id*/
else gen(L.place '[‘L.offset']’ ‘:=' E.place); \}
$\mathrm{E}-\mathrm{D} 1+\mathrm{E} 2$ \{E.place := newtemp gen(E.place ' := 'E1.place+ E2.place); \}

SDDfor Array to Produce TAC

$\mathrm{E}->$ (E1) \{E.place :=E1.place; \}

E-> L \{if L.offset = null then gen(E.place ' :='L.place); else begin

```
E.place :=newtemp();
gen(E.place ':='L.place ‘[` L.offset']' );
```

end
\}

L-> id \{L.place := id.place; L.offset := null;

SDDfor Array to ProduceTAC

L-> Elist] \{L.offset = newtemp;
L.place:=newtemp;
gen(L.place ' $:=$ 'c(Elist.array)); gen(L.offset ' $:=$ 'Elist.place ${ }^{\text {‘*' }}$ width(Elist.array)); \}

Elist-> Elist,E \{t:= newtemp(); m:=Elist.dim +1 ; gen($t^{\prime}:=$ ‘ Elist.place * limit(Elist.array,m); gen(t ': $=‘ \mathrm{t}+$ E.place);
Elist.array := Elist.array
Elist.dim : =m;
Elist.place :=t;

SDDfor Array to Produce TAC

Elist-> id [E \{Elist.array := id.place;
Elist.dim : =1;
Elist.place :=E.place;
\}

SDD for Array to Produce TAC

For Eg: - $\mathrm{x}:=\mathrm{A}[\mathrm{y} \boldsymbol{z}]$ dimensions 10 * 20 and width of $\mathrm{A}=4$ Prodace TAC using SDD of Array t produce TAC

SDDfor Array to Produce TAC

First drawing parse tree we obtain :-

SDDfor Array to ProduceTAC

SDDfor Array to Produce TAC

SDDfor Array to Produce TAC

SDDfor Array to ProduceTAC

SDDfor Array to Produce TAC

SDDfor Array to ProduceTAC

Elist-> Elist,E \{t:= newtemp(); m:=Elist.dim +1 ;
gen($\mathrm{t}^{\prime}:=$ ' Elist.place *
limit(Elist.array,m);
gen($\mathrm{t}^{\prime}:=$ ' $\mathrm{t}+$ E.place);
Elist.array := Elist.array
Elist.dim : =m;
Elist.place :=t;
\}
Now, we have
t $=$ t 1
$\mathrm{m}=1($ Elist.dim) $+\mathbf{1 = 2}$
$\mathbf{t 1}=\mathbf{t 1} * 20(\operatorname{limit}(\mathrm{~A}, 2))$
$\mathbf{t} \mathbf{1}=\mathbf{t} \mathbf{1}+\mathrm{z}$
From previous, Elist.array = A Elist.Place :=y Elist.ndinn 2019

And,
Elist.array =A
Elist.dim : = m = $\mathbf{2}$
Elist.place $=\mathbf{t 1}$

SDDfor Array to Produce TAC

SDDfor Array to Produce TAC

SDDfor Array to ProduceTAC

L-> id has semantic rule i.e
L.offset = null
L.place $=$ id.place $=x$

SDDfor Array to ProduceTAC

S-> L: = E \{if L.offset = null then gen(L.place ${ }^{\text {: }:=\text { 'E.place); }}$ /* Lis aid*/ else
gen(L.place '[‘ L.offset']’‘=‘ E.place);

Now,
L.offset = null

And L.place $=x$
Thus,
$\mathrm{x}=\mathrm{t} 4$ as E.place $=\mathrm{t} 4$

SDDfor Array to ProduceTAC

Thus, finally the TACgenerated for
$x=A[y, z]$ with dimensions 10 * 20 and width 4 is :

SDD for Assignments Statements to Produce TAC

$$
\mathrm{S} \rightarrow \mathrm{id}:=\mathrm{E}
$$

\{p:= lookup (id.name)

$$
\text { if } \mathbf{p} \neq \text { NIL then }
$$

$$
\operatorname{gen}(p=\text { E.place })
$$

else

$$
\text { error } \quad / * \text { id not declared */ }
$$

$$
\}
$$

\{ Eplace := newtemp;
gen(E.place := E1.place ' + 'E2.place \}
\{ Eplace :=newtemp; gen(E.place := E1.place ${ }^{*}$ 'E2.place \}

SDD for Assignments Statements to Produce TAC

```
E}->- E
    E}->(\textrm{E}1
    E-> id
```

\{ Eplace := newtemp;
gen(E.place := ‘minus' E1.place \}
\{ Eplace := E1.place \}
\{ p := lookup (id.name)
if $\mathbf{p} \neq$ NIL then
E.place $=\mathbf{p}$
else
error
\}

SDDfor Array to ProduceTAC

Thus, finally the TACgenerated for
$x=a^{*} b+c^{*} d+e^{*} f$

SDDfor Boolean Expressions as Arithmetic Expressions to Produce TAC

```
\(\mathrm{E} \rightarrow \mathrm{E}\) 1 or E 2
```

$\mathrm{E} \rightarrow \mathrm{E} 1$ and E 2

E-> not E1
$\mathrm{E}->$ (E1)

E->id1 relop id2
\{ Eplace := newtemp;
E.place :=E1.place 'OR' E2.place \}
\{ Eplace := newtemp;
E.place :=E1.place 'AND' E2.place \}
\{ Eplace := newtemp;
E.place := 'NOT' E1.place \}
\{E.place:= E1.place; \}
\{E.place := newtemp;
gen('if' id1. place RELOP id2.place 'goto' stmt +3); gen(E.place :=0);
gen('goto' stmt+2);
gen(E.place :=1);
\}

SDDfor Boolean Expressions as Arithmetic Expressions to Produce TAC

E->true	$\{$ Eplace $:=$ newtemp; gen(E.place $‘:=‘ 1) ;\}$
E->false	\{Eplace $:=$ newtemp; gen(E.place $‘:=‘ 0) ;\}$

Produce TACfor

a or b and $\mathrm{c}<\mathrm{d}$ and $\mathrm{e}<\mathrm{f}$

SDDfor Boolean Expressions as Arithmetic Expressions to Produce TAC

Thus, finally the TACgenerated	$100:$ if $a<b$ goto 103
for	$101: t 1=0$
a or b and $c<d$ and $e<f$	$102:$ goto 104
	$103: t 1=1$
	$104:$:if $c<d$ goto 107
	$105: \mathrm{t} 2=0$
	$106:$ goto 108
	$107: \mathrm{t} 2=1$
	$108:$ if $\mathrm{e}<\mathrm{f}$ goto 111
	$109: \mathrm{t} 3=0$
	$110:$ goto 108
	$111: \mathrm{t} 3=1$
	$112: \mathrm{t} 4=\mathrm{t}$ and t 3
	$113: \mathrm{t} 5=\mathrm{t} 1$ and t 4

SDD for Boolean Expressions As Control Flow to Produce

$\mathrm{E} \rightarrow \mathrm{E}$ 1or E 2

$\mathrm{E} \rightarrow \mathrm{E} 1$ and E 2

E-> not E1

```
{E1.true := E.true;
E1.false:= ReyAzel,
    E2.true:= E.trte,
    E2.false := E.false;
    E.code := E1.code || gen(E1.false,':') || E2.code }
{E1.true := newlabel;
    E1.false := E.false;
    E2.true:= E.true;
    E2.false := E.false;
    E.code := E1.code | | gen(E1.true,':') || E2.code }
    {E1.true := E.false;
    E1.false := E.true;
    E.code := E1.code }
```


SDD for Boolean Expressions As Control Flow to Produce

$\mathrm{E} \rightarrow$ (E 1)

E->id1 relop id2

E->true

E->false

```
{ E1.true ;= Etrue
    E1.false :% Amase;
    E.code := E1.code }
E.Code := gen('‘if' id1.place relop.op id2.place 'goto' E.true)| | gen('goto' E.false) )
E.Code := gen('goto' E.true)
E.Code := gen('goto’ E.false)
```


Code for $\quad \mathrm{a}<\mathrm{b}$ or $\mathrm{c}<\mathrm{d}$ and $\mathrm{e}<\mathrm{f}$

 if $\mathrm{a}<\mathrm{b}$ goto Ltrue goto L1L1: if $\mathrm{c}<\mathrm{d}_{\text {goto }}^{\mathrm{L}}$ 2 goto Lfalse
L2: if e<f gotoLtrue goto Lfalse

Ltrue:
Lalse:

Control flow translation of boolean expression ...

- Translate boolean expressions without:
- generating code for boolean operators
- evaluating the entire expression
- Flow of control statements $S \rightarrow$ if Ethen S_{1}
| if Ethen S_{1} else S_{2}
| while Edo S_{1}

$S \rightarrow$ if Ethen S_{1}

$$
\begin{aligned}
& \text { E.true = newlabel } \\
& \text { E.false = S.next } \\
& \text { S }_{1} . \text { next }=\text { S.next } \\
& \text { S.code } \left.=\text { E.code } \| \text { gen(E.true ' }:^{\prime}\right) \| S_{1} . \text { code }
\end{aligned}
$$

$\mathrm{S} \rightarrow$ if Ethen S_{1} else S_{2}
E.true = newlabel
E.false = newlabel

$$
S_{1} \cdot \text { next }=\text { S.next }
$$

$$
S_{2} \cdot \text { next }=\text { S.next }
$$

S.code = E.code ||
gen(E.true ':') ||

$$
\mathrm{S}_{1} \cdot \text { code } \|
$$

gen(goto S.next)||
gen(E.false ':') | |
S_{2}.code||gen(goto S.next)
|| gen(S.next.':')

S.begin		
E.code		E.true
	S.frulse	
	goto S.begin	
E.false		

$\mathrm{S} \rightarrow$ while Edo S_{1}
S.begin $=$ newlabel
E.true $=$ newlabel
E.false $=$ S.next
S_{1}.next $=$ S.begin
S.ocde $=$ gen(S.begin ':') ||
E.code \||
gen(E.true ':') ||
S_{1}. code ||
gen(goto S.begin) $|\mid$

Flow of Control

$S \rightarrow$ while Edo S_{1}

S.begin :
E.code
if E.place $=0$ goto S.after
S_{1}.code
goto S.begin
S.after :

```
S.begin := newlabel
S.after := newlabel
S.code := gen(S.begin:) |
    E.code |
    gen(if E.place = 0 goto S.after)|
    S
    gen(goto S.begin)|
    gen(S.after:)
```


Flow of Control ...

$S \rightarrow$ if Ethen S_{1} else S_{2}
E.code
if E.place $=0$ goto S.else
S_{1}.code goto S.after
S.else:
S.code
S.after:
S.else := newlabel
S.after := newlabel
S.code = E.code || gen(if E.place $=0$ goto S.else) II
S_{1}.code ||
gen(goto S.after) || gen(S.else:) II
S_{2}.code || gen(S.after:)

Example ...

Code for	while $\mathrm{a}<\mathrm{b}$ do
L1:	if $\mathrm{a}<\mathrm{b}$ goto L2
	goto Lnext
L2:	if $\mathrm{c}<$ d goto L 3
	goto L4
L3:	$t_{1}=Y+Z$
	$X=t_{1}$
	goto S'next
L4:	$\mathrm{t}_{1}=Y-Z X=$
	goto S'next
S'ne	goto L1
Lnex	

FOLLOWINGSLDESNOTIN SYLLABUS 2012 ...ButJUSTFOR REFERENCE

CaseStatement

- switch expression begin
case value: statement
case value: statement
case value: statement
default: statement
end
- evaluate the expression
- find which value in the list of cases is the same as the value of the expression.
- Default value matches the expression if none of the values explicitly mentioned in the cases matches the expression
- execute the statement associated with thevalue found

Translation

code to evaluate Einto t if $\mathrm{t} \gg$ V1 gotoL1 code for S1 goto next
L1 if $\mathrm{t}<>$ V2 goto L2 code for S2 goto next
L2:
Ln-2 if $\mathrm{t}<$ Vn-I goto Ln-l code for Sn-l goto next
Ln-1: code for Sn next:

code to evaluate E intot goto test
goto next
goto next

Sn
goto next
if t V1 gotoL1
if $\mathrm{t}=\mathrm{V} 2$ goto L 2
if $\mathrm{t}=\mathrm{Vn}$-1 goto $\mathrm{Ln}-1$
goto Ln
next:

BackPatching

- way to implement boolean expressions and flow of control statements in one pass
- code is generated asquadruples into an array
- labels are indices into this array
- makelist(i): create a newlist containing only i , return a pointer to the list.
- merge(p1,p2): merge lists pointed to by p1 and p2 and return a pointerto the concatenated list
- backpatch(p,i): insert i as the target label for the statements in the list pointed to byp

Boolean Expressions

```
    E}->\mp@subsup{\textrm{E}}{1}{}\mathrm{ or M E E
        | E1 and M E E
        |ot E.
        | (E)
        |id
        | true
        | false
M }->
```

- Insert a marker non terminal M into the grammar to pick up index of next quadruple.
- attributes truelist and falselist are used to generate jump code for boolean expressions
- incomplete jumps are placed on lists pointed to by E.truelistand E.falselist

Boolean expressions ...

- Consider $\mathrm{E} \rightarrow \mathrm{E}_{1}$ and $\mathrm{M} \mathrm{E}_{2}$
- if E_{i} is false then Eis also false so statements in E_{1}.falselist become part of E.falselist
- if E_{1} is true then E_{2} must be tested so target of E_{1}.truelist is beginning of E_{2}
- target is obtained by marker M
- attribute M.quad records the number of the first statement of E_{2}.code

$\mathrm{E} \rightarrow \mathrm{E}_{1}$ or $\mathrm{M} \mathrm{E}_{2}$

 backpatch(E_{1}.falselist, M.quad)E.truelist $=$ merge(E_{1}. truelist, E_{2}.truelist)
E.falselist $=\mathrm{E}_{2}$.falselist
$\mathrm{E} \rightarrow \mathrm{E}_{1}$ and $\mathrm{ME} \mathrm{E}_{2}$
backpatch(E_{1}.truelist, M.quad)
E.truelist = E_{2}.truelist
E.falselist $=\operatorname{merge}\left(\mathrm{E}_{1}\right.$. falselist, $\mathrm{E}_{2} . f$ falselist $)$
$\mathrm{E} \rightarrow$ not E_{1}
E.truelist = E_{1} falselist
E.falselist $=\mathrm{E}_{1}$. truelist
$\mathrm{E} \rightarrow\left(\mathrm{E}_{1}\right)$
E.truelist = E_{1}.truelist
E.falselist $=\mathrm{E}_{1}$.falselist
$\mathrm{E} \rightarrow \mathrm{id}_{1}$ relop id_{2}
E.truelist = makelist(nextquad)
E.falselist $=$ makelist(nextquad +1) emit(if id ${ }_{1}$ relop id ${ }_{2}$ goto ---) emit(goto ---)
$\mathrm{E} \rightarrow$ true
E.truelist = makelist(nextquad)
emit(goto ---)
$E \rightarrow$ false
E.falselist = makelist(nextquad)
emit(goto ---)
$M \rightarrow \epsilon$
M.quad = nextquad

Generate code for a<b or c $<$ d and $e<f$

Initialize nextquad to 100

$$
\begin{aligned}
& \text { E.t=\{100,104\}} \\
& \text { E.f }=\{103,105\}
\end{aligned}
$$

100: if $a<b$ goto101: goto - 102
102: if c < d goto - 104
103: goto -
104: if e < f goto 105 goto -

Procedure Calls

$\mathrm{S} \rightarrow$ call id (Elist)

Elist \rightarrow Elist , E
Elist \rightarrow E

- Calling sequence
- allocate space for activation record
- evaluate arguments
- establish environment pointers
- save status and return address
- jump to the beginning of the procedure

Procedure Calls ...

Example

- parameters are passed by reference
- storage is statically allocated
- use param statement as place holder for the arguments
- called procedure is passed a pointer to the firstparameter
- pointers to any argument can be obtained by usingproper offsets

CodeGeneration

- Generate three address code needed to evaluate arguments which are expressions
- Generate a list of param three addressstatements
- Store arguments in alist
$\mathrm{S} \rightarrow$ call id (Elist)
\{ count =0;
for each item p onqueue do $\{$
emit('param' p) ; count = count $+1 ;\}$
emit('call' id.place,count)
Elist \rightarrow Elist , E
append E.place to the end ofqueue
Elist $\rightarrow \mathrm{E}$
initialize queue to contain E.place

THANK YOU!!!!!!!!!!!

My Blog : anandgharu.wordpress.com

