PUNE VIDYARTHI GRIHA’s

£ 4
e

C%)_—LLEGE OF ENGINEERING, NASHIK.

* “INTRODUCTION OF COMPILER AND
L1IEXICAL ANALYSIS ”

PROF. ANAND N. GHARU
ASSISTANT PROFESSOR
COMPUTER DEPARTMENT
317200 SUBJECT — COMP WoleR(BE COMPUTER SPPU-2019)

“ COMPILER

* INTERPRETER

v_ﬂNALYSIS SYNTHESIS MODEL

M e LANGUAGE PROCESSING SYSTEM
‘- COMPILER PROCESSINBRIEF

nnnnnnnnnnnnnnnnn
UUUUUUUUUUUUUUUUU

COMPILERS

* “Compilation’

— Translation of a program written in a source
language into a semantically equivalent program
| written in atargetlanguage

Compiler
Program

e e e Pt St e s et

Error messages

* “lit¢erpretation’

— Performing the operations implied by the source
program

“Source
Program
Interpreter

g Outout

nnnnnnnnnnn
UUUUUUUUUUUUUUUUU

H

~J
NP
P
[N
W

» There are two parts to compilation:

Analysis determines the operations
Implied by the source program which
are recorded in atree structure

Synthesis takes the tree structure
and translates the operations therein
Into the target program

Breaks up the source
program into
constituent pieces and
imposes a
grammatical structure
on them. It then uses
this structure tocreate
an intermediate
representation of the

- source program.

ANALYSIS

If the analysis part
detects that the source
program is either
syntactically ill formed
or semantically
unsound, then it must
provide informative
messages, so the user
can take corrective
action.

The analysis part also
collects information
about the source
program and stores it
in a data structure
called a symbol table,
which is passed along
with the intermediate
representation to the
synthesis part.

SYNTHESIS

* Thesynthesis part constructs the desired target programfrom
the intermediate representation and the information in the
symbol table

m- Front end of compiler
I I- Back end of compiler

ir7/9010 ' FNUI. AINNAND UT'TANU

COMPILERS ROLE

* An essential function of acompiler—

Record the variable names used in the source
program and collect information about various
attributes of each name.

« These attributes may provide information about the storage
allocated for aname, its type and its scope , procedure
names ,number and types of its arguments, the method of
passing each argument and the type returned

ISSUES IN COMPILATION

Hierarchy of operations need to be maintained to determine
correct order of expression evaluation

Maintain data type integrity with automatic type conversions

Handle user defineddata types.

Develop appropriate storage mappings

ISSUES IN COMPILATION

Resolve occurrence of each variable name ina program I.e
~construct separate symbol tables for different namespaces.

Handle different controlstructures.

Perform optimization

10

nnnnnnnnnnnnnnnnnnnnnnnn
UUUUUUUUUUUUUUUUUUUUUUUU

4) ISSUESIN COMPILATION

Speed better worse
(potentially) better
Memory better for for small programs
large programs
Modularity worse better
Flexibility worse better
“Global” optimization Impossible possible

Source Language single pass compilers are notpossible

for many programming languages

COMPILER PASSES

A pass.is a complete traversal of the source program, or a
complete traversal of some internal representation of the
- source program.

A pass can correspond to a “phase” but it does not have to!

Sometimes a single “pass” corresponds toseveral phases that
are interleaved in time.

What and how many passes a compiler does over the source
program is an important designdecision.

4) SINGLE PASS COMPILER

Asingle pass compiler makes a single pass over the source text,
parsing, analyzing and generating code all atonce.

Dependency diagram of a typical Single Pass Compiler:
Compiler Driver

[calls

Syntactic Analyzer
calls / calls
N

Contextual Analyzer @ | Code Generator

v MULTI PASS COMPILER

A multi pass compiler makes several passes over the program. The
output of apreceding phase is stored in adata structure and used by
subseguent phases.

Dependency diagram of a typical Multi Pass Compiler:

Compiler Driver

calls calls
calls

Syntactic Analyzer Contextual Analyzer Code Generator

IW Nputy Nputy Nput

Source Text Decorated AST Object Code

14

I7/z91og T TNRUT ANANU UJIrARNU

=, ¥ SYMBOL TABLE MEANS

Symbol tables are data structures that are used by
compilers to hold information about source-program
constructs.

Asymbol table is a necessary component because
= Declaration of identifiers appears once in aprogram

= Use of identifiers may appear in many places ofthe
program text

0‘; FORMATION PROVIDED BY
SYMBOL TABLE

= Given an Identifier which name isit?
= What information is to be associated with a name?
= How do we access thisinformation?

16

nnnnnnnnnnnnnnnnnnnnn
UUUUUUUUUUUUUUUUUUUUUUUU

SYMBOL TABLE NAMES

Variable and labels

Parameter
/ Constant
NAME / > Record
\\ RecordField
\ Procedure

17

nnnnnnnnnnnnnnnnnnnnnnnn
UUUUUUUUUUUUUUUUUUUUUUUU

TABLE ?

» |dentifiers and attributes are entered by the analysisphases
when processing a definition (declaration) of an identifier
* |n simple languages with only global variables andimplicit
declarations:
v'The scanner can enter an identifier into a symboltable
If It is not alreadythere

* In block-structured languages with scopes and explicit
declarations:

v The parser and/or semantic analyzer enter identifiers
and corresponding attributes

0‘- USE OF SYMBOL TABLE

« S/mbol table information is used by the analysis and
synthesis phases

« To verify that used Iidentifiers have been defined
(Aeclaran)

« To verify that expressions and assignments are
semantically correct —type checking

To generate intermediate or target code

4} MEMORY MANAGEMENT

What has a compiler to do withmemory
management?

« compiler uses heap -allocated data structures
* modern languages have automatic data

(de)allocation

- garbage collection part of runtime support system
- compiler usually assists in identifyingpointers

m GARBAGE COLLECTION

» Some systems require user to call freewhen
finished with memory

— C C++
reason for destructors in C+
 Other systems detect unused memory and
reclaim it
— Garbage Collection
— this Is what Javadoes

uuuuuuuuuuuuuuuuuuuuuuuu

m GARBAGE COLLECTION

* Basic idea

— keep track of what memory is referencedand
when it Is no longer accessible, reclaim the
memory

* Example
— linked list

HHHHHHHHHHHHHHHHHHHHHHHH

EXAMPLE

e

. next next next .____+||
tail
\ ‘/

« Assume programmer does the following
— objl.next =obj2.next;

head

A 4

Obj1 Obj2 Obj3

%

il next next next .____+h

head

A 4

L/7/£U1LT FANUT. AINAIND UT'TANU

m EXAMPLE

* Now there Is no way forprogrammer to
reference obj2
— it's garbage

* |In system without garbage collection thisis
called a memory leak
— location can’t be used but can't bereallocated
— waste of memory and can eventually crasha

program

* |n system with garbage collection this
chunk will be found and reclaimed

MARK AND SWEEP

* Basicidea

— go through all memory and mark every chunk
that is referenced

— make a second pass through memory and
remove all chunks not marked

*Mark chunks 0, 1, and 3 as marked
*Place chunk 2 on the free list (turn it into a hole)

I7/z91og T TNRUT ANANU UJIrARNU

m MARK AND SWEEP ISSUES

» Have to be able toidentify all references
— this is difficult in some languages
— similar to compaction

» Requires jJumping all over memory

— terrible for performance
e cache hits
e virtual memory

» Haveto stop everything else to do

» Searchtime proportional to non-garbage
— may require lots of work for little reward

m REFERENCE COUNTING

« Basicidea
— give each chunk a special field that isthe
number of references to chunk

— whenever anew reference is made, iIncrement
field by 1

— whenever areference Is removed, decrement
field by 1

— when reference count goesto zero, collect
chunk

* Requires compiler support

m REFERENCE COUNTING

« Example
— everything in italics is added by compiler

Object p = new Object; P LA, EN

p.count++;

Object g = new Object; a|

g.count++;

p.count--;

If(p.count ==0) N o
collectp A

P=q,
p.count++;

HHHHHHHHHHHHHHHHHHHHHHHH

m REFERENCE COUNTING

-

* Above example does not check for NULL

reference
Object p =new Object
p.count++;
p.count--;
P =NULL;
if(p 1= NULL)
p.count++;

UUUUUUUUUUUUUUUUU

ISSUES

 \What about pointers inside Oreferenced
page”?

e

— both of these are garbage

— before reclaiming a chunk, must go
through all references in the chunk

« decrement the chunk they reference by 1

nnnnnnnnnnnnnn
HHHHHHHHHHHHHHHHH

h * TOOLS USING
b ANALYSIS— SYNTHESIS MODEL

Editors (syntax highlighting)

A5

. Pretty printers (e.g. Doxygen)

Static checkers (e.g. Lint and Splint)

— Interpreters

31

nnnnnnnnnnnnnnnnnnnnn
UUUUUUUUUUUUUUUUUUUUUUUU

TOOLS USING
ANALYSIS— SYNTHESIS MODEL

Text formatters (e.g. TeXand LaTeX)

Silicon compilers (e.g. VHDL)

—Query interpreters/compilers (Databases)

32

S, COMPILERS,
AND LINKERS

Skeletal Source Program

Preprocessor

Try for example:
gcc myprog.c

Assembler

Target Assembly Program

Libraries and
Relocatable
Object Files

Relocatable Object Code

Absolute Machine Code

33

PHASES OF COMPILER

Source
Code

.

Lexical Analyzer

¥

Semantics Analyzer

¥
Synteoc Analyzer T

Symbol " J . Error
Table " Intermediate Code Handler

Generator

Code Optimizer
¥

Code Generator

Assembly
Code

Compiler

2040
[£ULT FNNUT. AINAINND UOTIMTANNU

ases

Pragrammer Ignucca code producer)

Scanner (performs lexical analysis)

Parser (performs syntax analysisbased
on the grammar of the programming
language)

Semantic analyzer (type checking, etc)

Intermediate code generator

Optimizer

Code generator

Peephole optimizer

Output
Source string

Token string

Parse tree or abstract syntax tree

Annotated parse tree or abstract
syntax tree

Three-address code, quads, orRTL

Three-address code, quads, orRTL

Assembly code

Assembly code

A=B+C;

THE PHASES OF A COMPILER

Sample

‘A” ‘=” ‘B” ‘+” ‘C’, ‘;’

Andsymbol table with names

)

/\
A +
/\
BC

int2fpB t1

+ t1 C t2
= t2 A

int2fp B t1

+ t1#23A

MOVF #2.3,r1
ADDF2r1,r2
MOVF r2,A

ADDF2 #2.3,r2
MOVF r2,A

34

I7/Z017

FANUT. AINAIND UT'TANU

THE GROUPING OF PHASES

£ Front end: analysis (machine h Acollection of phases s done
independent) only once (single pass) or

» Back end: synthesis (machine multiple times (multi pass)
dependent) « Single pass: usually requires

everything to be defined before
being used in source program

* Multi pass: compiler mayhave
to keep entire program
representation in memory

Compiler front

and back ends

L/7/£U1LT FANUT. AINAIND UT'TANU

Software development tools are available
to Implement one or more compiler
phases

« Scanner generators

* Parser generators

« Syntax-directed translation engines
 Automatic code generators

* Data-flow engines

BLOCK SCHEMATIC OF
's LEXICAL ANALYZER

token
e lexical
program analyzer parser
get next
token
symbol

table

nnnnnnnnnnnnnnnnnnnnnnnn
UUUUUUUUUUUUUUUUUUUUUUUU

LEXICAL ANALYZER
PERSPECTIVE

LEXICALANALYZER PARSER
Scaninput

Remove WS, NL, ... Identify Perform Syntax Analysis

Actions Dictated by TokenOrder

ok ~ | Update Symbol Table Entries

Tok Create Abstract Rep. of Source A

Generate Errors

SEPERATION OF LEXICAL ANALYSIS
v FROM SYNTAX ANALYSIS

« Separation of Lexical Analysis From Parsing

» Separation Increases Compiler Efficiency (1/0

» Separation Promotes Portability.

Presents a Simpler Conceptual Model

— Hom a Software Engineering Perspective Division
Emphasizes
» High Cohesionand Low Coupling
 Implies Well Specified = Parallel Implementation

Techniques to Enhance Lexical Analysis)

— This is critical today, when platforms (OSsand
Hardware) are numerous and varied!

— Emergence of Platform Independence - Java

I77

LUL1lJD

HHHHHHHHHHHHHHHHH

BASIC TERMINOLOGIES OF
LEXICAL ANALYSIS

O Major Terms for Lexical Analysis?
0 TOKEN

» A classification for a common set of strings

» Examples Include <ldentifier>, <number>, etc.
o PATTERN

» The rules which characterize the set of strings for a
token

» Recall File and OS Wildcards ([A-Z]*.*)
o LEXEME

» Actual sequence of characters that matches pattern and
IS classified by a token

» ldentifiers: X, count, name, etc...

™% -

Token

5

const

if
relation
id

literal

Sample Lexemes Informal Description of Pattern
const const

if if

S, <5, 5,<>, > >= <Or<=0r=0or<>0r »=or >

pi, count, D2 letter followed by letters anddigits

3,1416.0. 6 w_u_;\ any numeric constant

“core dumped”

INTRODUCING BASIC
TERMINOLOGY

any characters between “and “except “

N

\

Classifies
Pattern

Actual values are critical. Info is:

1. Stored in symbol table
2. Returned to parser

/O - KEY FOR ESSFUL
LEXICAL ANALYSI

O Character-at-a-time 1/0
O Block / Buffered 1/0

O Block/Buffered I/0
o Utilize Block of memory

0 Stage data from source to buffer block at a time
o Maintain two blocks - Why (Recall OS)?

» Asynchronous I/O - for 1 block

» While Lexical Analysis on 2nd block

Block 1 Block 2
N J

\c/IVhen' ptr... , Still Process

one, Issue Y token in 2nd

4 block

Algorithm
Buffered I/O with Sentinels

/_HCurrent token

E = M:* i eofC eof eof

lexeme / \ forward (scans

beginning ahead to find
forward : = forward + 1 pattern match)

if forward is at eof then begin
if forward at end of first half then begin
reload second half;- Block I/0
forward : = forward +1

end
else if forward at end of second half then begin

reload first half ; AEaoiO
move forward to biginning of first half

end
else / * eof within buffer signifying end of input */

terminate lexical analysis

efn%l eof = no more ifput !

4]
L/7/£U1LT FANUT. AINAIND UT'TANU

HANDLING LEXICAL
ERRORS

Error Handling Is very localized, with Respect to
Input Source

For example: whl (IX =0)do
generates no lexical errors in PASCAL

In what Situations do Errors Occur?

— Prefix of remaining input doesn’'tmatch any defined
token

Possible error recovery actions:

— Deleting or Inserting Input Characters
— Replacing or Transposing Characters

Or, skip over to next separator to “ignore”
problem

nnnnnnnnnnnnnn
HHHHHHHHHHHHHHHHH

ADNLARMNILD A—LILADILL

FANUT. AINAIND UTN'ANU

DD O

172 /9010

3 17 [/£ULD

@

Tool that helps to take set of descriptions
- of possible tokens and produce Croutine

The set of descriptions Is called lex
specification

The token description are known as
“regular expressions

L EXICAL ANALYZERLEX

» Lex Isatool for creating lexical analyzers.

@ 4/ AUTOMATIC CONSTRUCTION OF

» Lexical analyzers tokenize input streams.
* Tokens are the terminals of a language.

* Regular expressions define tokens .

@L]

lex
source

program
lex.1

lex.yy.c

A AUTOMATIC CONSTRUCTION OF
EXICAL ANALYZER

...... LEX

> lex.yy.c

> Lex compiler

iInput

> a.out

compiler

a.out

stream

sequence

)of tokens

<
[

W

llllllllllll
HHHHHHHHHHH

\Q:@EQ LEX SPECIFICATION

Lex Program Structure:

declarations

0 0
© ©

translation rules

0 0
© ©

auxililiary procedures

Name the file e.g.test.lex
Then,“lex test.lex’ produces thefile
“lex.yy.c’ (aC-program)

LEX SPECIFICATION

/* definitions of all constants
LT, LE, EQ, NE, GT, GE, IF, THEN, ELSE, ... * /

C declarations
A

((letter [A-Za-z]
digit [0-9]

declarations
A

id {letter} ({letter} | {digit})*
N

%%
((if { return (IF);}

then { return (THEN) ;}
{id} { yylval = install id(); return(ID); }

Rules
A

N

o°
o°

install id()
{ /* procedure to install the lexeme to the ST */

Auxiliary

+ AUTOMATIC CONSTRUCTION OF
L. EXICAL ANALYZERLEX

@

*Torun lex on a source file, use the command: lex source.l

*This produces the file lex.yy.c which is the C source for the

lexical analyzer.

» To compile this, use: cc -0 prog -0 lex.yy.c -l

— EXAMIPLE OF LEX
Qaj = ' SPECIFICATION

o - Contains
% {

. : the matching
#include <stdio.h> e

Translationg }
rules oo /
\-O o
[

0-9]+ { printf(“%s\n”, yytext); }

\n { }

main ()
{ yylex(); lex spec.l
} gcc lex.yy.c -1l

./a.out < spec.l

Lew ¥ SPECIFICATION

s {
#include <stdio.h>
Translation int ch = 0, wd = 0, nl1 = 0; Regular

rules %} é////,//’”deﬁnition
delim [\t]+

o9
©°70

\n { ch++; wd++; nl++; }

*{delim} { ch+=yyleng; }

{delim} { ch+=yyleng; wd++; }
{ ch++; }

main ()

{ yylex();

printf ("$8d%8d%8d\n", nl, wd, ch);

texs § SPECIFICATION

s {
#include <stdio.h>
Translation %} Regular

rules digit [0-9] zf,,,/f,,f””’deﬁnMOn
letter [A-Za-

id
{letter} ({letter} | {digit}) *

o9
©°70

{digit}+ { printf (“‘number: %s\n”,

yytext); }
{id} { printf (“ident: %s\n”,
yytext); }

. { printf (“other: %s\n”,
yytext) ; }

Lew REGULAR
Q EXPRESSIONS

* [xyz] match one character x, y, or z
(use \ to escape -) [*xyz]match any
character except x, y, and z

e [a-z] matchoneofa toz
* 1* closure (match zero or more occurrences)

* 1+ positive closure (match one or more
occurrences)

* I? optional (match zero or one occurrence)

. r r mateh vr thonrvr (cancatonatinnd
K 1|2 LILLEC A 1L |1 CIIcCtIld I2\\.—U||\.—C|LC|IC|&\\L/JI|'

int num lines = 0,

o\°
o\°

—
)

o\°
o\°

num chars = 0;

{++num lines; ++num chars;}
{++num chars; }

malin(argc,

int argc;

{
++argv,

argv)

-—-argc;

char **argv;

/* skip over program name

DRAOLC _AMNARND ~1IANII
FANUT. AINAIND UT'TANU

*/
if
Vyyin
else
vylex () ;
printf (
$d\n",

yyln =

(argc > 0)

= fopen(argv[0], "xr");

stdin;
"# of lines = %d, # of chars =

num lines, num chars); }

%${ #include <stdio.
WS [\t\n]*

o\°
o\°

(01234567891 +
[a—zA-7Z] [a—zA-Z0-=-9] *
{WS }

O\O .
o\©

h> %}

printf ("NUMBER\N") ;
printf ("WORD\n") ;

/* do nothing */

printf ("UNKNOWN\Nn"“) ;

N
&P
W

LAY

AAAAAAAAA
HHHHHHHHHHHHHHH

main (
int argc;
{ ++argv,

1f

else
yylex () ;

argc,

(argc > 0)
yyln =

argv)
char **argv;

—-—-argc;
yvyin = fopen(argv[0],
stdin;

J

"r\\) ;

3/1

AAAAAAAAAAAAAAA

7/2019

