
PUNE VIDYARTHI GRIHA’s

COLLEGE OF ENGINEERING, NASHIK.

• “INTRODUCTION OF COMPILER AND
L1EXICAL ANALYSIS ”

3/17/2019 PROF. ANAND GHARU

PREPARED BY :

PROF. ANAND N. GHARU

ASSISTANT PROFESSOR

COMPUTER DEPARTMENT

SUBJECT – COMPILER (BE COMPUTER SPPU-2019)

CONTENTS

• COMPILER

• INTERPRETER

• ANALYSIS SYNTHESIS MODEL

• LANGUAGE PROCESSING SYSTEM

• COMPILER PROCESS IN BRIEF

2

3/17/2019 PROF. ANAND GHARU

COMPILERS

3/17/2019 PROF. ANAND GHARU

• “Compilation”

– Translation of a program written in a source

language into a semantically equivalent program

written in a target language

Input

Compiler

Error messages

Source

Program

Target

Program

Output
3

• “Interpretation”

– Performing the operations implied by the source

program

INTERPRTERS

3/17/2019 PROF. ANAND GHARU

Interpreter

Source

Program

Input

Output

Error messages

4

ANALYSIS – SYNTHESIS MODEL

• There are two parts to compilation:

Analysis determines the operations
implied by the source program which
are recorded in a tree structure

Synthesis takes the tree structure
and translates the operations therein
into the target program

5

3/17/2019 PROF. ANAND GHARU

ANALYSIS

3/17/2019 PROF. ANAND GHARU

Breaks up the source
program into
constituent pieces and
imposes a
grammatical structure
on them. It then uses
this structure to create
an intermediate
representation of the
source program.

If the analysis part
detects that the source
program is either
syntactically ill formed
or semantically
unsound, then it must
provide informative
messages, so the user
can take corrective
action.

The analysis part also
collects information
about the source
program and stores it
in a data structure
called a symbol table,
which is passed along
with the intermediate
representation to the
synthesis part.

6

• Front end of compiler

• Back end of compiler • Back end of compiler

• The synthesis part constructs the desired target program from

the intermediate representation and the information in the

symbol table

• Front end of compiler

SYNTHESIS

3/17/2019 PROF. ANAND GHARU

ANALYSIS

SYNTHESIS

7

Record the variable names used in the source

program and collect information about various

attributes of each name.

• An ess ential function of a compiler –

COMPILERS ROLE

3/17/2019 PROF. ANAND GHARU

• These attributes may provide information about the storage

allocated for a name , its type and its scope , procedure

names ,number and types of its arguments, the method of

passing each argument and the type returned

8

ISSUES IN COMPILATION

3/17/2019 PROF. ANAND GHARU

Hierarchy of operations need to be maintained to determine
correct order of expression evaluation

Maintain data type integrity with automatic type conversions

Handle user defined data types.

Develop appropriate storage mappings

9

ISSUES IN COMPILATION

3/17/2019 PROF. ANAND GHARU

Resolve occurrence of each variable name in a program i.e
construct separate symbol tables for different namespaces.

Handle different control structures.

Perform optimization

10

Single Pass Multi Pass

Speed

Memory

better worse

better for

large programs

(potentially) better

for small programs

ISSUES IN COMPILATION

3/17/2019 PROF. ANAND GHARU

11

Modularity

Flexibility

“Global” optimization

Source Language

worse better

better worse

impossible possible

single pass compilers are not possible

for many programming languages

12

A pass is

COMPILER PASSES

3/17/2019 PROF. ANAND GHARU

a complete traversal of the source program, or a
complete traversal of some internal representation of the
source program.

A pass can correspond to a “phase” but it does not have to!

Sometimes a single “pass” corresponds to several phases that
are interleaved in time.

What and how many passes a compiler does over the source
program is an important design decision.

SINGLE PASS COMPILER

3/17/2019 PROF. ANAND GHARU

A single pass compiler makes a single pass over the source text,

parsing, analyzing and generating code all at once.

Dependency diagram of a typical Single Pass Compiler:

Compiler Driver

calls

Syntactic Analyzer

calls

Contextual Analyzer Code Generator

calls

13

A multi pass c ompiler makes several passes over the program. The

output of a preceding phase is stored in a data structure and used by

subsequent phases.

Dependency diagram of a typical Multi Pass Compiler:

Compiler Driver

MULTI PASS COMPILER

3/17/2019 PROF. ANAND GHARU

calls

Syntactic Analyzer Contextual Analyzer Code Generator

calls calls

input
input output output

Source Text AST Decorated AST

input
output

Object Code

14

SYMBOL TABLE MEANS

3/17/2019 PROF. ANAND GHARU

Symbol tables are data structures that are used by

compilers to hold information about source-program

constructs.

A symbol table is a necessary component because

 Declaration of identifiers appears once in a program

 Use of identifiers may appear in many places of the
program text

15

IN FORMATION PROVIDED BY
SYMBOL TABLE

3/17/2019 PROF. ANAND GHARU

 Given an Identifier which name is it?

 What information is to be associated with a name?

 How do we access this information?

16

Variable and labels

Parameter

Constant

SYMBOL TABLE NAMES

3/17/2019 PROF. ANAND GHARU

NAME Record

RecordField

Procedure

Array and files

17

 Identifi

WHO CREATES SYMBOL

TABLE ?

3/17/2019 PROF. ANAND GHARU

ers and attributes are entered by the analysis phases

when processing a definition (declaration) of an identifier

 In simple languages with only global variables and implicit

declarations:

The scanner can enter an identifier into a symbol table

if it is not already there

 In block-structured languages with scopes and explicit

declarations:

 The parser and/or semantic analyzer enter identifiers

and corresponding attributes

18

• Symbol table information is used by the analysis and

synthesis phases

• To verify that used identifiers have been defined

(declared)

USE OF SYMBOL TABLE

3/17/2019 PROF. ANAND GHARU

assignments are • To verify that expressions and

semantically correct – type checking

• To generate intermediate or target code

19

MEMORY MANAGEMENT

3/17/2019 PROF. ANAND GHARU

What has a compiler to do with memory

management?

• compiler uses heap -allocated data structures

• modern languages have automatic data

(de)allocation
• garbage collection part of runtime support system

• compiler usually assists in identifying pointers

–

GARBAGE COLLECTION

3/17/2019 PROF. ANAND GHARU

• Some systems require user to call free when

finished with memory

– C / C++

reason for destructors in C++

• Other systems detect unused memory and

reclaim it

– Garbage Collection

– this is what Java does

GARBAGE COLLECTION

3/17/2019 PROF. ANAND GHARU

• Basic idea

– keep track of what memory is referenced and

when it is no longer accessible, reclaim the

memory

• Example

– linked list

next

Obj1
head

tail
next

Obj2

next

Obj3

EXAMPLE

3/17/2019 PROF. ANAND GHARU

• Assume programmer does the following

– obj1.next = obj2.next;

next

Obj1
head

tail
next

Obj2

next

Obj3

• No

EXAMPLE

3/17/2019 PROF. ANAND GHARU

w there is no way for programmer to

reference obj2

– it’s garbage

• In system without garbage collection this is

called a memory leak

– location can’t be used but can’t be reallocated

– waste of memory and can eventually crash a

program

• In system with garbage collection this

chunk will be found and reclaimed

• Basi

MARK AND SWEEP

3/17/2019 PROF. ANAND GHARU

0 100 350 450 600

•Mark chunks 0, 1, and 3 as marked

•Place chunk 2 on the free list (turn it into a hole)

c idea

– go through all memory and mark every chunk

that is referenced

– make a second pass through memory and

remove all chunks not marked

OS 0 1 2 3

p2 = 650 p2 = 360

• Hav

MARK AND SWEEP ISSUES

3/17/2019 PROF. ANAND GHARU

e to be able to identify all references

– this is difficult in some languages

– similar to compaction

• Requires jumping all over memory

– terrible for performance
• cache hits

• virtual memory

• Have to stop everything else to do

• Search time proportional to non-garbage

– may require lots of work for little reward

•

REFERENCE COUNTING

3/17/2019 PROF. ANAND GHARU

Basic idea

– give each chunk a special field that is the
number of references to chunk

– whenever a new reference is made, increment
field by 1

– whenever a reference is removed, decrement
field by 1

– when reference count goes to zero, collect
chunk

• Requires compiler support

• Exa mple

– everything in italics is added by compiler

Object p = new Object;

p.count++;

p 1 0

REFERENCE COUNTING

3/17/2019 PROF. ANAND GHARU

Object q = new Object;

q.count++;

p.count--;

if(p.count == 0)

collect p

p = q;

p.count++;

1

q

2

REFERENCE COUNTING

3/17/2019 PROF. ANAND GHARU

• Above example does not check for NULL

reference
Object p = new Object

p.count++;

p.count--;

p = NULL;

if(p != NULL)

p.count++;

• What about pointers inside 0 referenced

page?
0 1

REFERENCE COUNTING

ISSUES

3/17/2019 PROF. ANAND GHARU

– both of these are garbage

– before reclaiming a chunk, must go

through all references in the chunk

• decrement the chunk they reference by 1

TOOLS USING
ANALYSIS – SYNTHESIS MODEL

3/17/2019 PROF. ANAND GHARU

Editors (syntax highlighting)

Pretty printers (e.g. Doxygen)

Static checkers (e.g. Lint and Splint)

Interpreters

31

TOOLS USING
ANALYSIS – SYNTHESIS MODEL

3/17/2019 PROF. ANAND GHARU

Text formatters (e.g. TeX and LaTeX)

Silicon compilers (e.g. VHDL)

Query interpreters/ compilers (Databases)

32

Skeletal Source Program

Preprocessor

Try for example:

PREPROCESSORS, COMPILERS,
ASSEMBLERS, AND LINKERS

3/17/2019 PROF. ANAND GHARU

Absolute Machine Code

Linker

Assembler

Compiler

Target Assembly Program

Relocatable Object Code

Libraries and

Relocatable

Object Files

gcc myprog.c

33

Skeletal Source Program

Preprocessor

PHASES OF COMPILER

3/17/2019 PROF. ANAND GHARU

Linker

Assembler

Compiler

34

s Output Sample Phase

Programmer (source co de producer) Source string A=B+C;

Scanner (performs lexical analysis) Token string ‘A’, ‘=’, ‘B’, ‘+’, ‘C’, ‘;’

And symbol table with names

Parser (performs syntax analysis based

on the grammar of the programming

language)

Parse tree or abstract syntax tree

THE PHASES OF A COMPILER

3/17/2019 PROF. ANAND GHARU

;

|

=

/ \
A +

/ \

B C

Semantic analyzer (type checking, etc) Annotated parse tree or abstract

syntax tree

Intermediate code generator Three-address code, quads, or RTL int2fp B t1
+ t1 C t2

:= t2 A

Optimizer Three-address code, quads, or RTL

Code generator Assembly code

int2fp B t1

+ t1 #2.3 A

MOVF #2.3,r1

ADDF2 r1,r2

MOVF r2,A

Peephole optimizer Assembly code ADDF2 #2.3,r2
MOVF r2,A

34

• Front end: analysis (machine
independent)

• Back end: synthesis (machine
dependent)

THE GROUPING OF PHASES

3/17/2019 PROF. ANAND GHARU

Compiler front
and back ends

• A collection of phases is done
only once (single pass) or
multiple times (multi pass)

• Single pass: usually requires
everything to be defined before
being used in source program

• Multi pass: compiler may have
to keep entire program
representation in memory

Compiler
passes

COMPILER CONSTRUCTION
TOOLS

3/17/2019 PROF. ANAND GHARU

Software development tools are available
to implement one or more compiler
phases

• Scanner generators

• Parser generators

• Syntax-directed translation engines

• Automatic code generators

• Data-flow engines

lexical

analyzer parser
source

program

token

BLOCK SCHEMATIC OF
LEXICAL ANALYZER

3/17/2019 PROF. ANAND GHARU

get next

token

symbol

table

LEXICAL ANALYZER
PERSPECTIVE

LEXICAL ANALYZER PARSER

• Scan input

• Remove WS, NL, … Identify

Tokens Create Symbol Table Insert

Tokens into ST Generate Errors

• Send Tokens to Parser

3/17/2019 PROF. ANAND GHARU

38

Perform Syntax Analysis

Actions Dictated by Token Order

Update Symbol Table Entries

Create Abstract Rep. of Source

Generate Errors

SEPERATION OF LEXICAL ANALYSIS
FROM SYNTAX ANALYSIS

3/17/2019 PROF. ANAND GHARU

39

• Separation of Lexical Analysis From Parsing
Presents a Simpler Conceptual Model
– From a Software Engineering Perspective Division

Emphasizes
• High Cohesion and Low Coupling

• Implies Well Specified Parallel Implementation

• Separation Increases Compiler Efficiency (I/O
Techniques to Enhance Lexical Analysis)

• Separation Promotes Portability.

– This is critical today, when platforms (OSs and
Hardware) are numerous and varied!

– Emergence of Platform Independence - Java

BASIC TERMINOLOGIES OF
LEXICAL ANALYSIS

3/17/2019 PROF. ANAND GHARU

40

 Major Terms for Lexical Analysis?
 TOKEN

 A classification for a common set of strings

 Examples Include <Identifier>, <number>, etc.

 PATTERN

 The rules which characterize the set of strings for a

token

 Recall File and OS Wildcards ([A-Z]*.*)

 LEXEME

 Actual sequence of characters that matches pattern and

is classified by a token

 Identifiers: x, count, name, etc…

INTRODUCING BASIC
TERMINOLOGY

3/17/2019 PROF. ANAND GHARU

Token Sample Lexemes Informal Description of Pattern

const

if

relation

id

41

num

literal

const

if

<, <=, =, < >, >, >=

pi, count, D2

3.1416, 0, 6.02E23

“core dumped”

const

if

< or <= or = or < > or >= or >

letter followed by letters and digits

any numeric constant

any characters between “ and “ except “

Classifies

Pattern

Actual values are critical. Info is :

1. Stored in symbol table

2.Returned to parser

I/O - KEY FOR SUCCESSFUL
LEXICAL ANALYSIS

3/17/2019 PROF. ANAND GHARU

42

 Character-at-a-time I/O

 Block / Buffered I/O

 Block/Buffered I/O

 Utilize Block of memory

 Stage data from source to buffer block at a time

 Maintain two blocks - Why (Recall OS)?

 Asynchronous I/O - for 1 block

 While Lexical Analysis on 2nd block

Block 1 Block 2

ptr... When

done, issue

I/O

Still Process

token in 2nd

block

Algorithm
Buffered I/O with Sentinels

3/17/2019 PROF. ANAND GHARU

eof eof E = M * * 2 * eof C

Current token

forward (scans

ahead to find

pattern match)

43

lexeme

beginning
forward : = forward + 1 ;

if forward is at eof then begin

if forward at end of first half then begin

reload second half ;

terminate lexical analysis end
2nd eof no more input !

Block I/O

forward : = forward + 1

end

else if forward at end of second half then begin

reload first half ;
Block I/O

move forward to biginning of first half

end

else / * eof within buffer signifying end of input * /

HANDLING LEXICAL
ERRORS

3/17/2019 PROF. ANAND GHARU

44

• Error Handling is very localized, with Respect to
Input Source

• For example: whil (x := 0) do
generates no lexical errors in PASCAL

• In what Situations do Errors Occur?

– Prefix of remaining input doesn’t match any defined
token

• Possible error recovery actions:
– Deleting or Inserting Input Characters

– Replacing or Transposing Characters

• Or, skip over to next separator to “ignore”
problem

3/17/2019 PROF. ANAND GHARU

Tool that helps to take set of descriptions
of possible tokens and produce C routine

The set of descriptions is called lex
specification

The token description are known as
regular expressions

3/17/2019 PROF. ANAND GHARU

L
AUTOMATIC CONSTRUCTION OF

EXICAL ANALYZER ……LEX

3/17/2019 PROF. ANAND GHARU

• Lex is a tool for creating lexical analyzers.

• Lexical analyzers tokenize input streams.

• Tokens are the terminals of a language.

• Regular expressions define tokens .

C

compile

r

a.out

A
L

AUTOMATIC CONSTRUCTION OF
EXICAL ANALYZER ……LEX

3/17/2019 PROF. ANAND GHARU

Lex compiler lex.yy.c

lex

source

program
lex.l

lex.yy.c

input

stream

sequence

of tokens

a.out
C

compiler

a.out

LEX SPECIFICATION

3/17/2019 PROF. ANAND GHARU

Lex Program Structure:

declarations

%%

translation rules

%%

auxiliary procedures

Name the file e.g. test.lex
Then, “lex test.lex” produces the file
“lex.yy.c” (a C-program)

LEX SPECIFICATION

3/17/2019 PROF. ANAND GHARU

%{

/* definitions of all constants
LT, LE, EQ, NE, GT, GE, IF, THEN, ELSE, ... */

C
 d

ec
la

ra
t

s
n o
i

%}

......

letter

digit

id

[A-Za-z]

[0-9]

{letter}({letter}|{digit})*

{ return(IF);}

{ return(THEN);}

{ yylval = install_id(); return(ID); }

......

%%

if

then

{id}

......

%%

install_id()

{ /* procedure to install the lexeme to the ST */

d
ec

la
ra

ti
o

n
s

R
u

le
s

A
u

x
il

ia
ry

L
AUTOMATIC CONSTRUCTION OF

EXICAL ANALYZER ……LEX

3/17/2019 PROF. ANAND GHARU

•To run lex on a source file, use the command: lex source.l

•This produces the file lex.yy.c which is the C source for the

lexical analyzer.

• To compile this, use: cc -o prog -O lex.yy.c -ll

Invokes

the lexical

analyzer

EXAMPLE OF LEX
SPECIFICATION

3/17/2019 PROF. ANAND GHARU

%{

#include <stdio.h>

%%

Contains

the matching

lexeme
Translation%}

rules

{ printf(“%s\n”, yytext); }

{ }

[0-9]+

.|\n

%%

main()

{ yylex();

}

Invokes

the lexical

analyzer

lex spec.l

gcc lex.yy.c -ll

./a.out < spec.l

%{

#include <stdio.h>

int ch = 0, wd = 0, nl = 0;

%}

[\t]+

Regular

definition

Translation

rules

EXAMPLE OF LEX
SPECIFICATION

3/17/2019 PROF. ANAND GHARU

{ ch++; wd++; nl++; }

{ ch+=yyleng; }

{ ch+=yyleng; wd++; }

{ ch++; }

delim

%%

\n

^{delim}

{delim}

.

%%

main()

{ yylex();

printf("%8d%8d%8d\n", nl, wd, ch);

%{

#include <stdio.h>

%}

[0-9]

[A-Za-z]

Regular

definition

Translation

rules

EXAMPLE OF LEX
SPECIFICATION

3/17/2019 PROF. ANAND GHARU

digit

letter

id

{letter}({letter}|{digit})*

%%

{digit}+ { printf(“number: %s\n”,

yytext); }

{id} { printf(“ident: %s\n”,

yytext); }

. { printf(“other: %s\n”,

yytext); }

REGULAR
EXPRESSIONS

• [xyz] match one character x, y, or z
(use \ to escape -) [^xyz]match any
character except x, y, and z

• [a-z] match one of a to z

• r* closure (match zero or more occurrences)

• r+ positive closure (match one or more
occurrences)

• r? optional (match zero or one occurrence)

• r1r2 match r1 then r2 (concatenation)

• r1|r2 match r1 or r2 (union)

• (r) grouping

• r1\r2 match r1 when followed by r2

• {d} match the regular expression
defined by d

3/17/2019 PROF. ANAND GHARU

EXAMPLE OF LEX
PROGRAM

3/17/2019 PROF. ANAND GHARU

int num_lines = 0, num_chars = 0;

%%

{++num_lines; ++num_chars;}

{++num_chars;}

\n

.

%%

main(argc, argv)

int argc; char **argv;

{

++argv, --argc; /* skip over program name

EXAMPLE OF LEX
PROGRAM

3/17/2019 PROF. ANAND GHARU

*/

if (argc > 0)

yyin = fopen(argv[0], "r");

else yyin = stdin;

yylex();

printf("# of lines = %d, # of chars =

%d\n",

num_lines, num_chars); }

EXAMPLE OF LEX
PROGRAM

3/17/2019 PROF. ANAND GHARU

%{ #include <stdio.h> %}

WS [\t\n]*

%%

printf("NUMBER\n");

printf("WORD\n");

/* do nothing */

printf(“UNKNOWN\n“);

[0123456789]+

[a-zA-Z][a-zA-Z0-9]*

{WS}

.

%%

EXAMPLE OF LEX
PROGRAM

3/17/2019 PROF. ANAND GHARU

main(argc, argv)

int argc; char **argv;

{ ++argv, --argc;

if (argc > 0) yyin = fopen(argv[0], "r“);

else yyin = stdin;

yylex(); }

My Blog : anandgharu.wordpress.com

•THANK YOU!!!!!!!!!!

3/17/2019
PROF. ANAND GHARU

