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UNIT -2 

Syllabus - Syntax Analysis CFG, top-down and bottom-up parsers, RDP, Predictive parser, 

SLR, LR(1), LALR parsers, using ambiguous grammar, Error detection and recovery, 

automatic construction of parsers using YACC, Introduction to Semantic analysis, Need of 

semantic analysis, type checking and type conversion. 

 

SYNTAX ANALYSIS 
 

3.1 ROLE OF THE PARSER 

 

Parser obtains a string of tokens from the lexical analyzer and verifies that it can be generated by the 

language for the source program. The parser should report any syntax errors in an intelligible fashion. 

The two types of parsers employed are: 

1.Top down parser: which build parse trees from top(root) to bottom(leaves) 

2.Bottom up parser: which build parse trees from leaves and work up the root. 

Therefore there are two types of parsing methods– top-down parsing and bottom-up parsing 
 

3.2 TOP-DOWN PARSING 

A program that performs syntax analysis is called a parser. A syntax analyzer takes tokens as input 

and output error message if the program syntax is wrong. The parser uses symbol-look- ahead and 

an approach called top-down parsing without backtracking. Top-downparsers check to see if a 

string can be generated by a grammar by creating a parse tree starting from the initial symbol and 

working down. Bottom-up parsers, however, check to see a string can be generated from a 

grammar by creating a parse tree from the leaves, and working up. Early parser generators such as 

YACC creates bottom-up parsers whereas many of Java parser generators such as JavaCC create 

top-down parsers. 

 
3.3 RECURSIVE DESCENT PARSING 

Typically, top-down parsers are implemented as a set of recursive functions that descent through a 

parse tree for a string. This approach is known as recursive descent parsing, also known as LL(k) 

parsing where the first L stands for left-to-right, the second L stands for 
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leftmost-derivation, and k indicates k-symbol lookahead. Therefore, a parser using the single 

symbol look-ahead method and top-down parsing without backtracking is called LL(1) parser. In 

the following sections, we will also use an extended BNF notation in which some regulation 

expression operators are to be incorporated. 

A syntax expression defines sentences of the form , or . A syntax of the form defines sentences that 

consist of a sentence of the form followed by a sentence of the form followed by a sentence of the 

form . A syntax of the form defines zero or one occurrence of the form . A syntax of the form 

defines zero or more occurrences of the form . 

A usual implementation of an LL(1) parser is: 

o initialize its data structures, 

o get the lookahead token by calling scanner routines, and 

o call the routine that implements the start symbol. 

 

Here is an example. proc 

syntaxAnalysis() begin 

initialize(); // initialize global data and structures nextToken(); // 

get the lookahead token 

program(); // parser routine that implements the start symbol end; 

 
3.4 FIRST AND FOLLOW 

 

To compute FIRST(X) for all grammar symbols X, apply the following rules until no 

more terminals or e can be added to any FIRST set. 

1. If X is terminal, then FIRST(X) is {X}. 

2. If X->e is a production, then add e to FIRST(X). 

3. If X is nonterminal and X->Y1Y2...Yk is a production, then place a in FIRST(X) if for some i, a 

is in FIRST(Yi) and e is in all of FIRST(Y1),...,FIRST(Yi-1) that is, 

Y1.......Yi-1=*>e. If e is in FIRST(Yj) for all j=1,2,...,k, then add e to FIRST(X). For example, 

everything in FIRST(Yj) is surely in FIRST(X). If y1 does not derive e, then we add nothing more 

to FIRST(X), but if Y1=*>e, then we add FIRST(Y2) and so on. 

To compute the FIRST(A) for all nonterminals A, apply the following rules until nothing can 

be added to any FOLLOW set. 

1. Place $ in FOLLOW(S), where S is the start symbol and $ in the input right endmarker. 

2. If there is a production A=>aBs where FIRST(s) except e is placed in FOLLOW(B). 

3. If there is aproduction A->aB or a production A->aBs where FIRST(s) contains e, then 

everything in FOLLOW(A) is in FOLLOW(B). 

Consider the following example to understand the concept of First and Follow.Find the first and 

follow of all nonterminals in the Grammar- 

 



 

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4         Prepared by – Prof. Anand N. Gharu 

 

E -> TE' 

E'-> +TE'|e T -> 

FT' 

T'-> *FT'|e F -> 

(E)|id Then: 

FIRST(E)=FIRST(T)=FIRST(F)={(,id} 

FIRST(E')={+,e} 

FIRST(T')={*,e} FOLLOW(E)=FOLLOW(E')={),$} 

FOLLOW(T)=FOLLOW(T')={+,),$} 

FOLLOW(F)={+,*,),$} 

For example, id and left parenthesis are added to FIRST(F) by rule 3 in definition of FIRST with 

i=1 in each case, since FIRST(id)=(id) and FIRST('(')= {(} by rule 1. Then by rule 3 with i=1, the 

production T -> FT' implies that id and left parenthesis belong to FIRST(T) also. 

To compute FOLLOW,we put $ in FOLLOW(E) by rule 1 for FOLLOW. By rule 2 applied 

toproduction F-> (E), right parenthesis is also in FOLLOW(E). By rule 3 applied to production E-> 

TE', $ and right parenthesis are in FOLLOW(E'). 

 

3.5 CONSTRUCTION OF PREDICTIVE PARSING TABLES 

For any grammar G, the following algorithm can be used to construct the predictive parsing 

table. The algorithm is 

Input : Grammar G Output : 

Parsing table M Method 

1. 1.For each production A-> a of the grammar, do steps 2 and 3. 

2. For each terminal a in FIRST(a), add A->a, to M[A,a]. 

3. If e is in First(a), add A->a to M[A,b] for each terminal b in FOLLOW(A). If e is in 

FIRST(a) and $ is in FOLLOW(A), add A->a to M[A,$]. 

4. Make each undefined entry of M be error. 

 

 

3.6. LL(1) GRAMMAR 

The above algorithm can be applied to any grammar G to produce a parsing table M. For some 

Grammars, for example if G is left recursive or ambiguous, then M will have at least one multiply-

defined entry. A grammar whose parsing table has no multiply defined entries is said to be LL(1). 

It can be shown that the above algorithm can be used to produce for every LL(1) grammar G a 

parsing table M that parses all and only the sentences of G. LL(1) grammars have several 

distinctive properties. No ambiguous or left recursive grammar can  be LL(1). There remains a 

question of what should be done in case of multiply defined entries. One easy solution is to 

eliminate all left recursion and left factoring, hoping to produce a grammar which will produce no 

multiply defined entries in the parse tables. Unfortunately there are some grammars which will 

give an LL(1) grammar after any kind of alteration. In general, there are no universal rules to  
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convert multiply defined entries into single valued entries without affecting the language 

recognized by the parser. 

 
The main difficulty in using predictive parsing is in writing a grammar for the source language 

such that a predictive parser can be constructed from the grammar. Although left recursion 

elimination and left factoring are easy to do, they make the resulting grammar hard to read and 

difficult to use the translation purposes. To alleviate some of this difficulty, a common 

organization for a parser in a compiler is to use a predictive parser for control 

constructs and to use operator precedence for expressions.however, if an lr parser generator is 

available, one can get all the benefits of predictive parsing and operator precedence automatically. 

 

3.7. ERROR RECOVERY IN PREDICTIVE PARSING 

The stack of a nonrecursive predictive parser makes explicit the terminals and nonterminals that 

the parser hopes to match with the remainder of the input. We shall therefore refer to symbols on 

the parser stack in the following discussion. An error is detected during predictive parsing when 

the terminal on top of the stack does not match the next input symbol or when nonterminal A is on 

top of the stack, a is the next input symbol, and the parsing table entry M[A,a] is empty. 

Panic-mode error recovery is based on the idea of skipping symbols on the input until a token in a 

selected set of synchronizing tokens appears. Its effectiveness depends on the choice of 

synchronizing set. The sets should be chosen so that the parser recovers quickly from errors that 

are likely to occur in practice. Some heuristics are as follows 

 

   As a starting point, we can place all symbols in FOLLOW(A) into the synchronizing set for 

nonterminal A. If we skip tokens until an element of FOLLOW(A) is seen and pop A from 

the stack, it is likely that parsing can continue. 

 It is not enough to use FOLLOW(A) as the synchronizingset for A. Fo example , if semicolons 

terminate statements, as in C, then keywords that begin statements may not appear in the 

FOLLOW set of the nonterminal generating expressions. A missing semicolon after an 

assignment may therefore result in the keyword beginning the next statement being skipped. 

Often, there is a hierarchica structure on constructs in a language; e.g., expressions appear 

within statement, which appear within bblocks,and so on. We can add to the synchronizing set 

of a lower construct the symbols that begin higher constructs. For example, we might add 

keywords that begin statements to the synchronizing sets for the nonterminals generaitn 

expressions. 
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    If we add symbols in FIRST(A) to the synchronizing set for nonterminal A, then it may be 

possible to resume parsing according to A if a symbol in FIRST(A) appears in the input. 

    If a nonterminal can generate the empty string, then the production deriving e can be used 

as a default. Doing so may postpone some error detection, but cannot cause an error to be 

missed. This approach reduces the number of nonterminals that have to be considered 

during error recovery. 

    If a terminal on top of the stack cannot be matched, a simple idea is to pop the terminal, 

issue a message saying that the terminal was inserted, and continue parsing. In effect, this 

approach takes the synchronizing set of a token to consist of all other tokens. 
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PARSER 

 
4.1 LR PARSING INTRODUCTION 

The "L" is for left-to-right scanning of the input and the "R" is for constructing a rightmost 

derivation in reverse. 

 

 

 

 

 

4.2 WHY LR PARSING: 

 LR parsers can be constructed to recognize virtually all programming-language constructs 

for which context-free grammars can be written. 

 The LR parsing method is the most general non-backtracking shift-reduce parsing method 

known, yet it can be implemented as efficiently as other shift-reduce methods. 

 The class of grammars that can be parsed using LR methods is a proper subset of the class 

of grammars that can be parsed with predictive parsers. 

 An LR parser can detect a syntactic error as soon as it is possible to do so on a left-to- right 

scan of the input. 

The disadvantage is that it takes too much work to constuct an LR parser by hand for a typical 

programming-language grammar. But there are lots of LR parser generators available to make this 

task easy. 
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4.3. MODELS OF LR PARSERS 

The schematic form of an LR parser is shown below. 

 

 

 
The program uses a stack to store a string of the form s0X1s1X2...Xmsm where sm is on top. Each 

Xi is a grammar symbol and each si is a symbol representing a state. Each state symbol summarizes 

the information contained in the stack below it. The combination of the state symbol on top of the 

stack and the current input symbol are used to index the parsing table and determine the shiftreduce 

parsing decision. The parsing table consists of two parts: a parsing action function action and a goto 

function goto. The program driving the LR parser behaves as follows: It determines sm the state 

currently on top of the stack and ai the current input symbol. It then consults action[sm,ai], which 

can have one of four values: 

 shift s, where s is a state 

 reduce by a grammar production A -> b 

 accept 

 error 
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The function goto takes a state and grammar symbol as arguments and produces a state. 

For a parsing table constructed for a grammar G, the goto table is the transition function of a 

deterministic finite automaton that recognizes the viable prefixes of G. Recall that the viable 

prefixes of G are those prefixes of right-sentential forms that can appear on the stack of a 

shiftreduce parser because they do not extend past the rightmost handle. 

A configuration of an LR parser is a pair whose first component is the stack contents and whose 

second component is the unexpended input: 

(s0 X1 s1 X2 s2... Xm sm, ai ai+1... an$) 

This configuration represents the right-sentential form X1 

X1 ... Xm ai ai+1 ...an 

in essentially the same way a shift-reduce parser would; only the presence of the states on the stack 

is new. Recall the sample parse we did (see Example 1: Sample bottom-up parse) in which we 

assembled the right-sentential form by concatenating the remainder of the input buffer to the top of 

the stack. The next move of the parser is determined by reading ai and sm, and consulting the 

parsing action table entry action[sm, ai]. Note that we are just looking at the state here and no 

symbol below it. We'll see how this actually works later. 

The configurations resulting after each of the four types of move are as follows: 

If action[sm, ai] = shift s, the parser executes a shift move entering the configuration (s0 X1 

s1 X2 s2... Xm sm ai s, ai+1... an$) 

Here the parser has shifted both the current input symbol ai and the next symbol. 

If action[sm, ai] = reduce A -> b, then the parser executes a reduce move, entering the 

configuration, 

(s0 X1 s1 X2 s2... Xm-r sm-r A s, ai ai+1... an$) 

where s = goto[sm-r, A] and r is the length of b, the right side of the production. The parser first 

popped 2r symbols off the stack (r state symbols and r grammar symbols), exposing state sm-r. The 

parser then pushed both A, the left side of the production, and s, the entry for goto[sm-r, A], onto 

the stack. The current input symbol is not changed in a reduce move. 

The output of an LR parser is generated after a reduce move by executing the semantic action 

associated with the reducing production. For example, we might just print out the production 

reduced. 

If action[sm, ai] = accept, parsing is completed. 
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4.4. OPERATOR PRECEDENCE PARSING 

Precedence Relations 

Bottom-up parsers for a large class of context-free grammars can be easily developed 

using operator grammars.Operator grammars have the property that no production right side is 

empty or has two adjacent nonterminals. This property enables the implementation of efficient 

operator-precedence parsers. These parser rely on the following three precedence relations: 

Relation Meaning 

a <· b a yields precedence to b 

a =· b a has the same precedence as b a ·> b 

a takes precedence over b 

These operator precedence relations allow to delimit the handles in the right sentential 

forms: <· marks the left end, =· appears in the interior of the handle, and ·> marks the right end. 
 

 

Example: The input string: 

id1 + id2 * id3 

after inserting precedence relations becomes 

$ <· id1 ·> + <· id2 ·> * <· id3 ·> $ 

Having precedence relations allows to identify handles as follows: 

 scan the string from left until seeing ·> 

 scan backwards the string from right to left until seeing <· 

 everything between the two relations <· and ·> forms the handle 
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4.5 OPERATOR PRECEDENCE PARSING ALGORITHM 

Initialize: Set ip to point to the first symbol of w$ 

Repeat: Let X be the top stack symbol, and a the symbol pointed to by ip if $ is 

on the top of the stack and ip points to $ then return 

else 

Let a be the top terminal on the stack, and b the symbol pointed to by ip 

if a <· b or a =· b then push 

b onto the stack 

advance ip to the next input symbol else if 

a ·> b then 

repeat 

pop the stack 

until the top stack terminal is related by <· to the 

terminal most recently popped 

else error() end 

 
4.6 ALGORITHM FOR CONSTRUCTING PRECEDENCE FUNCTIONS 

1. Create functions fa for each grammar terminal a and for the end of string symbol; 

2. Partition the symbols in groups so that fa and gb are in the same group if a =· b ( there can 

be symbols in the same group even if they are not connected by this relation) 

3. Create a directed graph whose nodes are in the groups, next for each symbols a and b do: 

place an edge from the group of gb to the group of fa if a <· b, otherwise if a ·> b place an 

edge from the group of fa to that of gb; 

4. If the constructed graph has a cycle then no precedence functions exist. When there are 

no cycles collect the length of the longest paths from the groups of fa and gb Example: 



 

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4         Prepared by – Prof. Anand N. Gharu 

 

 
 

Consider the above table Using the algorithm leads to the following graph: 
 

 

4.7 SHIFT REDUCE PARSING 

A shift-reduce parser uses a parse stack which (conceptually) contains grammar symbols. During 

the operation of the parser, symbols from the input are shifted onto the stack. If a prefix of the 

symbols on top of the stack matches the RHS of a grammar rule which is the correct rule to use 

within the current context, then the parser reduces the RHS of the rule to its LHS,replacing the 

RHS symbols on top of the stack with the nonterminal occurring on the LHS of the rule. This shift-

reduce process continues until the parser terminates, reporting either success or failure. It 

terminates with success when the input is legal and is accepted by the parser. It terminates with 

failure if an error is detected in the input. The parser is nothing but a stack automaton which may 

be in one of several discrete states. A state is usually represented simply as an integer. In reality, 

the parse stack contains states, rather than 

grammar symbols. However, since each state corresponds to a unique grammar symbol, the state 

stack can be mapped onto the grammar symbol stack mentioned earlier. 

The operation of the parser is controlled by a couple of tables: 

4.8 ACTION TABLE 

The action table is a table with rows indexed by states and columns indexed by terminal 

symbols. When the parser is in some state s and the current lookahead terminal is t, the action 

taken by the parser depends on the contents of action[s][t], which can contain four different 

kinds of entries: 
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Shift s' 

Shift state s' onto the parse stack. Reduce 

r 

Reduce by rule r. This is explained in more detail below. 

Accept 

Terminate the parse with success, accepting the input. 

Error 

Signal a parse error 

4.9 GOTO TABLE 

The goto table is a table with rows indexed by states and columns indexed by nonterminal 

symbols. When the parser is in state s immediately after reducing by rule N, then the next state to 

enter is given by goto[s][N]. 

The current state of a shift-reduce parser is the state on top of the state stack. The detailed 

operation of such a parser is as follows: 

1. Initialize the parse stack to contain a single state s0, where s0 is the distinguished initial state 

of the parser. 

2. Use the state s on top of the parse stack and the current lookahead t to consult the action table 

entry action[s][t]: 

· If the action table entry is shift s' then push state s' onto the stack and advance the input 

so that the lookahead is set to the next token. 

· If the action table entry is reduce r and rule r has m symbols in its RHS, then pop m 

symbols off the parse stack. Let s' be the state now revealed on top of the parse stack 

and N be the LHS nonterminal for rule r. Then consult the goto table and 

push the state given by goto[s'][N] onto the stack. The lookahead token is not 

changed by this step. 

 If the action table entry is accept, then terminate the parse with success. 

 If the action table entry is error, then signal an error. 

3. Repeat step (2) until the parser terminates. 

For example, consider the following simple grammar 

0) $S: stmt <EOF> 

1) stmt: ID ':=' expr 

2) expr: expr '+' ID 

3) expr: expr '-' ID 

4) expr: ID 

which describes assignment statements like a:= b + c - d. (Rule 0 is a special augmenting 

production added to the grammar). 

One possible set of shift-reduce parsing tables is shown below (sn denotes shift n, rn denotes 

reduce n, acc denotes accept and blank entries denote error entries): 
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Parser Tables 
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4.10 SLR PARSER 

An LR(0) item (or just item) of a grammar G is a production of G with a dot at some position of the 

right side indicating how much of a production we have seen up to a given point. 

For example, for the production E -> E + T we would have the following items: [E -> 

.E + T] 

[E -> E. + T] 

[E -> E +. T] 

[E -> E + T.] 
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4.11 CONSTRUCTING THE SLR PARSING TABLE 

To construct the parser table we must convert our NFA into a DFA. The states in the LR table will 

be the e-closures of the states corresponding to the items SO...the process of creating the LR state 

table parallels the process of constructing an equivalent DFA from a machine with e-transitions. 

Been there, done that - this is essentially the subset construction algorithm so we are in familiar 

territory here. 

We need two operations: closure() and 

goto(). 

closure() 

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by the 

two rules: Initially every item in I is added to closure(I) 

If A -> a.Bb is in closure(I), and B -> g is a production, then add the initial item [B -> .g] to I, if it is 

not already there. Apply this rule until no more new items can be added to closure(I). 

From our grammar above, if I is the set of one item {[E'-> .E]}, then closure(I) contains: I0: E' 

-> .E 

E -> .E + T E -> 

.T 

T -> .T * F T -> 

.F 

F -> .(E) 

F -> .id 

goto() 

goto(I, X), where I is a set of items and X is a grammar symbol, is defined to be the closure of the 

set of all items [A -> aX.b] such that [A -> a.Xb] is in I. The idea here is fairly intuitive: if I is the 

set of items that are valid for some viable prefix g, then goto(I, X) is the set of items that are valid 

for the viable prefix gX. 

4.12 SETS-OF-ITEMS-CONSTRUCTION 

To construct the canonical collection of sets of LR(0) items for 

augmented grammar G'. 

procedure items(G') begin 

C := {closure({[S' -> .S]})}; 

repeat 

for each set of items in C and each grammar symbol X such 

that goto(I, X) is not empty and not in C do 

add goto(I, X) to C; 

until no more sets of items can be added to C end; 
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4.13 ALGORITHM FOR CONSTRUCTING AN SLR PARSING TABLE 

Input: augmented grammar G' 

Output: SLR parsing table functions action and goto for G' 

Method: 

Construct C = {I0, I1 , ..., In} the collection of sets of LR(0) items for G'. State i is 

constructed from Ii: 

if [A -> a.ab] is in Ii and goto(Ii, a) = Ij, then set action[i, a] to "shift j". Here a must be a 

terminal. 

if [A -> a.] is in Ii, then set action[i, a] to "reduce A -> a" for all a in FOLLOW(A). Here A may 

not be S'. 

if [S' -> S.] is in Ii, then set action[i, $] to "accept" 

If any conflicting actions are generated by these rules, the grammar is not SLR(1) and the 

algorithm fails to produce a parser. The goto transitions for state i are constructed for all 

nonterminals A using the rule: If goto(Ii, A)= Ij, then goto[i, A] = j. 

All entries not defined by rules 2 and 3 are made "error". 

The inital state of the parser is the one constructed from the set of items containing [S' -> .S]. Let's 

work an example to get a feel for what is going on, 

An Example 

(1) E -> E * B 

(2) E -> E + B 

(3) E -> B (4) B 

-> 0 (5) B -> 1 

The Action and Goto Table The two LR(0) parsing tables for this grammar look as follows: 
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5.1 CANONICAL LR PARSING 

By splitting states when necessary, we can arrange to have each state of an LR parser  indicate 

exactly which input symbols can follow a handle a for which there is a possible reduction to A. As 

the text points out, sometimes the FOLLOW sets give too much informationand doesn't (can't) 

discriminate between different reductions. 

The general form of an LR(k) item becomes [A -> a.b, s] where A -> ab is a production and s is a 

string of terminals. The first part (A -> a.b) is called the core and the second part is the lookahead. 

In LR(1) |s| is 1, so s is a single terminal. 

A -> ab is the usual righthand side with a marker; any a in s is an incoming token in which we are 

interested. Completed items used to be reduced for every incoming token in FOLLOW(A), but now 

we will reduce only if the next input token is in the lookahead set s..if we get two productions A -> 

a and B -> a, we can tell them apart when a is a handle on the stack if the corresponding completed 

items have different lookahead parts. Furthermore, note that the lookahead has no effect for an item 

of the form [A -> a.b, a] if b is not e. Recall that our problem occurs for completed items, so what 

we have done now is to say that an item of the form [A -> a., a] calls for a reduction by A -> a only 

if the next input symbol is a. More formally, an LR(1) item [A -> a.b, a] is valid for a viable prefix g 

if there is a derivation 

S =>* s abw, where g = sa, and either a is the first symbol of w, or w is e and a is $. 

5.2 ALGORITHM FOR CONSTRUCTION OF THE SETS OF LR(1) ITEMS 

Input: grammar G' 

Output: sets of LR(1) items that are the set of items valid for one or more viable prefixes of G' 

Method: 

closure(I) begin 

repeat 

for each item [A -> a.Bb, a] in I, each 

production B -> g in G', and each 

terminal b in FIRST(ba) 

such that [B -> .g, b] is not in I do add 

[B -> .g, b] to I; 

until no more items can be added to I; end; 

5.3 goto(I, X) 

begin 

let J be the set of items [A -> aX.b, a] such that [A -> 

a.Xb, a] is in I 

return closure(J); end; 

procedure items(G') begin 

C := {closure({S' -> .S, $})}; 

repeat 

for each set of items I in C and each grammar symbol X such that 
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goto(I, X) is not empty and not in C do 

add goto(I, X) to C 

until no more sets of items can be added to C; end; 

An example, 

Consider the following grammer, S’->S 

S->CC C-

>cC C->d 

Sets of LR(1) items 

I0: S’->.S,$ S-

>.CC,$ 

C->.Cc,c/d C-

>.d,c/d 

 

I1:S’->S.,$ 

I2:S->C.C,$ 

C->.Cc,$ 

C->.d,$ 

I3:C->c.C,c/d C-

>.Cc,c/d 

C->.d,c/d 

 

 

I4: C->d.,c/d 

 

I5: S->CC.,$ 

 

I6: C->c.C,$ 

C->.cC,$ 

C->.d,$ 

 

I7:C->d.,$ 

 

I8:C->cC.,c/d 

 

I9:C->cC.,$ 

 

Here is what the corresponding DFA looks like 
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5.4 ALGORITHM FOR CONSTRUCTION OF THE CANONICAL LR PARSING 

TABLE 

 

Input: grammar G' 

Output: canonical LR parsing table functions action and goto 

1. Construct C = {I0, I1 , ..., In} the collection of sets of LR(1) items for G'.State i is 

constructed from Ii. 

2. if [A -> a.ab, b>] is in Ii and goto(Ii, a) = Ij, then set action[i, a] to "shift j". Here a must 

be a terminal. 

3. if [A -> a., a] is in Ii, then set action[i, a] to "reduce A -> a" for all a in 

FOLLOW(A). Here A may not be S'. 

4. if [S' -> S.] is in Ii, then set action[i, $] to "accept" 

5. If any conflicting actions are generated by these rules, the grammar is not LR(1) and 

the algorithm fails to produce a parser. 

6. The goto transitions for state i are constructed for all nonterminals A using the rule: 

If goto(Ii, A)= Ij, then goto[i, A] = j. 

7. All entries not defined by rules 2 and 3 are made "error". 

8. The inital state of the parser is the one constructed from the set of items 

containing [S' -> .S, $]. 
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5.5.LALR PARSER: 

We begin with two observations. First, some of the states generated for LR(1) parsing have the 

same set of core (or first) components and differ only in their second component, the lookahead 

symbol. Our intuition is that we should be able to merge these states and reduce the number of 

states we have, getting close to the number of states that would be generated for LR(0) parsing. This 

observation suggests a hybrid approach: We can construct the canonical LR(1) sets of items and 

then look for sets of items having the same core. We merge these sets with common cores into one 

set of items. The merging of states with common cores can never produce a shift/reduce conflict 

that was not present in one of the original states because shift actions depend only on the core, not 

the lookahead. But it is possible for the merger to produce a reduce/reduce conflict. 

Our second observation is that we are really only interested in the lookahead symbol in places 

where there is a problem. So our next thought is to take the LR(0) set of items and add lookaheads 

only where they are needed. This leads to a more efficient, but much more complicated method. 

5.6 ALGORITHM FOR EASY CONSTRUCTION OF AN LALR TABLE 

Input: G' 

Output: LALR parsing table functions with action and goto for G'. 

Method: 

1. Construct C = {I0, I1 , ..., In} the collection of sets of LR(1) items for G'. 

2. For each core present among the set of LR(1) items, find all sets having that core and 

replace these sets by the union. 

3. Let C' = {J0, J1 , ..., Jm} be the resulting sets of LR(1) items. The parsing actions for 

state i are constructed from Ji in the same manner as in the construction of the canonical 

LR parsing table. 

4. If there is a conflict, the grammar is not LALR(1) and the algorithm fails. 

5. The goto table is constructed as follows: If J is the union of one or more sets of LR(1) 

items, that is, J = I0U I1 U ... U Ik, then the cores of goto(I0, X), goto(I1, X), ..., goto(Ik, 

X) are the same, since I0, I1 , ..., Ik all have the same core. Let K be the union of all sets 

of items having the same core asgoto(I1, X). 

6. Then goto(J, X) = K. 

Consider the above example, 

I3 & I6 can be replaced by their union I36:C-

>c.C,c/d/$ 

C->.Cc,C/D/$ C-

>.d,c/d/$ I47:C-

>d.,c/d/$ 

I89:C->Cc.,c/d/$ 

Parsing Table 
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state c d $ S C 

0 S36 S47  1 2 

1   Accept   

2 S36 S47   5 

36 S36 S47   89 

47 R3 R3    

5   R1   

89 R2 R2 R2   

5.7 HANDLING ERRORS 

The LALR parser may continue to do reductions after the LR parser would have spotted an error, 

but the LALR parser will never do a shift after the point the LR parser would have discovered the 

error and will eventually find the error. 

 
5.8 DANGLING ELSE 

The dangling else is a problem in computer programming in which an optional else clause in an If–

then(–else) statement  results  in  nested  conditionals  being  ambiguous.  Formally,  the context-

free grammar of the language is ambiguous, meaning there is more than one correct parse tree. 

In many programming languages one may write conditionally executed code in two forms: the if-

then form, and the if-then-else form – the else clause is optional: 

 

 

 

 

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Conditional_(computer_programming)#If.E2.80.93then.28.E2.80.93else.29
http://en.wikipedia.org/wiki/Conditional_(computer_programming)#If.E2.80.93then.28.E2.80.93else.29
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Ambiguous_grammar
http://en.wikipedia.org/wiki/Programming_language
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Consider the grammar: 

S ::= E $ 

E ::= E + E 

| E * E 

| ( E ) 

| id 

| num 

and four of its LALR(1) states: 

I0:  S ::= . E $ ? 

E ::= . E + E  +*$     I1:  S ::= E . $    ?      I2:  E ::= E * . E   +*$ E ::= . 

E * E  +*$         E ::= E . + E  +*$ E ::= . E + E +*$ E ::= . ( 

E ) +*$ E ::= E . * E +*$  E ::= . E * E   +*$ 

E ::= . id     +*$ E ::= . ( E )  +*$ 

E ::= . num    +*$      I3:  E ::= E * E .   +*$         E ::= . id     +*$ 

E ::= E . + E  +*$ E ::= . num +*$ 

E ::= E . * E +*$ 

Here we have a shift-reduce error. Consider the first two items in I3. If we have a*b+c and we 

parsed a*b, do we reduce using E ::= E * E or do we shift more symbols? In the former case we get 

a parse tree (a*b)+c; in the latter case we get a*(b+c). To resolve this conflict, we can specify that * 

has higher precedence than +. The precedence of a grammar production is equal to the precedence 

of the rightmost token at the rhs of the production. For example, the precedence of the production E 

::= E * E is equal to the precedence of the operator *, the precedence of the production E ::= ( E ) is 

equal to the precedence of the token ), and the precedence of the production E ::= if E then E else E 

is equal to the precedence of the token else. The idea is that if the look ahead has higher precedence 

than the production currently used, we shift. For example, if we are parsing E + E using the 

production rule E ::= E + E  and the look ahead is *, we shift *. If the look ahead has the same 

precedence as that of the current production and is left associative, we reduce, otherwise we shift. 

The above grammar is valid if we define the precedence and associativity of all the operators. Thus, 

it is very important when you write a parser using CUP or any other LALR(1) parser generator to 

specify associativities and precedence’s for most tokens (especially for those used as operators). 

Note: you can explicitly define the precedence of a rule in CUP using the %prec directive: 

E ::= MINUS E %prec UMINUS 

where UMINUS is a pseudo-token that has higher precedence than TIMES, MINUS etc, so that -

1*2 is equal to (-1)*2, not to -(1*2). 

Another thing we can do when specifying an LALR(1) grammar for a parser generator is error 

recovery. All the entries in the ACTION and GOTO tables that have no content correspond to 

syntax errors. The simplest thing to do in case of error is to report it and stop the parsing. But we 

would like to continue parsing finding more errors. This is called error recovery. Consider the 
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grammar: 

S ::= L = E ; 

| { SL } ; 

| error ; SL ::= 

S ; 

| SL S ; 

The special token error indicates to the parser what to do in case of invalid syntax for S (an invalid 

statement). In this case, it reads all the tokens from the input stream until it finds the first semicolon. 

The way the parser handles this is to first push an error state in the stack. In case of an error, the 

parser pops out elements from the stack until it finds an error state where it can proceed. Then it 

discards tokens from the input until a restart is possible. Inserting error handling productions in the 

proper places in a grammar to do good error recovery is considered very hard. 

 

5.9 LR ERROR RECOVERY 

An LR parser will detect an error when it consults the parsing action table and find a blank or error 

entry. Errors are never detected by consulting the goto table. An LR parser will detect an error as 

soon as there is no valid continuation for the portion of the input thus far scanned. A canonical LR 

parser will not make even a single reduction before announcing the error. SLR and LALR parsers 

may make several reductions before detecting an error, but they will never shift an erroneous input 

symbol onto the stack. 

 

5.10 PANIC-MODE ERROR RECOVERY 

We can implement panic-mode error recovery by scanning down the stack until a state s with a goto 

on a particular nonterminal A is found. Zero or more input symbols are then discarded until a 

symbol a is found that can legitimately follow A. The parser then stacks the state GOTO(s, A) and 

resumes normal parsing. The situation might exist where there is more than one choice for the 

nonterminal A. Normally these would be nonterminals representing major program pieces, e.g. an 

expression, a statement, or a block. For example, if A is the nonterminal stmt, a might be semicolon 

or }, which marks the end of a statement sequence. This method of error recovery attempts to 

eliminate the phrase containing the syntactic error. The parser determines that a string derivable 

from A contains an error. Part of that string has already been processed, and the result of this 

processing is a sequence of states on top of the stack. The remainder of the string is still in the input, 

and the parser attempts to skip over the remainder of this string by looking for a symbol on the input 

that can legitimately follow A. By removing states from the stack, skipping over the input, and 

pushing GOTO(s, A) on the stack, the parser pretends that if has found an instance of A and 

resumes normal parsing. 
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5.11 PHRASE-LEVEL RECOVERY 

 

Phrase-level recovery is implemented by examining each error entry in the LR action table and 

deciding on the basis of language usage the most likely programmer error that would give rise to 

that error. An appropriate recovery procedure can then be constructed; presumably the top of the 

stack and/or first input symbol would be modified in a way deemed appropriate for each error entry. 

In designing specific error-handling routines for an LR parser, we can fill in each blank entry in the 

action field with a pointer to an error routine that will take the appropriate action selected by the 

compiler designer. 

 

The actions may include insertion or deletion of symbols from the stack or the input or both, or 

alteration and transposition of input symbols. We must make our choices so that the LR parser will 

not get into an infinite loop. A safe strategy will assure that at least one input symbol will be 

removed or shifted eventually, or that the stack will eventually shrink if the end of the input has 

been reached. Popping a stack state that covers a non terminal should be avoided, because this 

modification eliminates from the stack a construct that has already been successfully parsed. 
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