
 Compiler Final Year Computer ngineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

PUNE VIDYARTHI GRIHA’s

COLLEGE OF ENGINEERING
(Approved by AICTE, Accredited by NAAC, Affiliated to SPPU)

NASHIK – 04.

COMPILER NOTES

UNIT - II

DEPARTMENT OF COMPUTER ENGINEERING

AY – 2018-19

 Compiler Final Year Computer ngineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

UNIT -2

Syllabus - Syntax Analysis CFG, top-down and bottom-up parsers, RDP, Predictive parser,

SLR, LR(1), LALR parsers, using ambiguous grammar, Error detection and recovery,

automatic construction of parsers using YACC, Introduction to Semantic analysis, Need of

semantic analysis, type checking and type conversion.

SYNTAX ANALYSIS

3.1 ROLE OF THE PARSER

Parser obtains a string of tokens from the lexical analyzer and verifies that it can be generated by the

language for the source program. The parser should report any syntax errors in an intelligible fashion.

The two types of parsers employed are:

1.Top down parser: which build parse trees from top(root) to bottom(leaves)

2.Bottom up parser: which build parse trees from leaves and work up the root.

Therefore there are two types of parsing methods– top-down parsing and bottom-up parsing

3.2 TOP-DOWN PARSING

A program that performs syntax analysis is called a parser. A syntax analyzer takes tokens as input

and output error message if the program syntax is wrong. The parser uses symbol-look- ahead and

an approach called top-down parsing without backtracking. Top-downparsers check to see if a

string can be generated by a grammar by creating a parse tree starting from the initial symbol and

working down. Bottom-up parsers, however, check to see a string can be generated from a

grammar by creating a parse tree from the leaves, and working up. Early parser generators such as

YACC creates bottom-up parsers whereas many of Java parser generators such as JavaCC create

top-down parsers.

3.3 RECURSIVE DESCENT PARSING

Typically, top-down parsers are implemented as a set of recursive functions that descent through a

parse tree for a string. This approach is known as recursive descent parsing, also known as LL(k)

parsing where the first L stands for left-to-right, the second L stands for

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

leftmost-derivation, and k indicates k-symbol lookahead. Therefore, a parser using the single

symbol look-ahead method and top-down parsing without backtracking is called LL(1) parser. In

the following sections, we will also use an extended BNF notation in which some regulation

expression operators are to be incorporated.

A syntax expression defines sentences of the form , or . A syntax of the form defines sentences that

consist of a sentence of the form followed by a sentence of the form followed by a sentence of the

form . A syntax of the form defines zero or one occurrence of the form . A syntax of the form

defines zero or more occurrences of the form .

A usual implementation of an LL(1) parser is:

o initialize its data structures,

o get the lookahead token by calling scanner routines, and

o call the routine that implements the start symbol.

Here is an example. proc

syntaxAnalysis() begin

initialize(); // initialize global data and structures nextToken(); //

get the lookahead token

program(); // parser routine that implements the start symbol end;

3.4 FIRST AND FOLLOW

To compute FIRST(X) for all grammar symbols X, apply the following rules until no

more terminals or e can be added to any FIRST set.

1. If X is terminal, then FIRST(X) is {X}.

2. If X->e is a production, then add e to FIRST(X).

3. If X is nonterminal and X->Y1Y2...Yk is a production, then place a in FIRST(X) if for some i, a

is in FIRST(Yi) and e is in all of FIRST(Y1),...,FIRST(Yi-1) that is,

Y1.......Yi-1=*>e. If e is in FIRST(Yj) for all j=1,2,...,k, then add e to FIRST(X). For example,

everything in FIRST(Yj) is surely in FIRST(X). If y1 does not derive e, then we add nothing more

to FIRST(X), but if Y1=*>e, then we add FIRST(Y2) and so on.

To compute the FIRST(A) for all nonterminals A, apply the following rules until nothing can

be added to any FOLLOW set.

1. Place $ in FOLLOW(S), where S is the start symbol and $ in the input right endmarker.

2. If there is a production A=>aBs where FIRST(s) except e is placed in FOLLOW(B).

3. If there is aproduction A->aB or a production A->aBs where FIRST(s) contains e, then

everything in FOLLOW(A) is in FOLLOW(B).

Consider the following example to understand the concept of First and Follow.Find the first and

follow of all nonterminals in the Grammar-

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

E -> TE'

E'-> +TE'|e T ->

FT'

T'-> *FT'|e F ->

(E)|id Then:

FIRST(E)=FIRST(T)=FIRST(F)={(,id}

FIRST(E')={+,e}

FIRST(T')={*,e} FOLLOW(E)=FOLLOW(E')={),$}

FOLLOW(T)=FOLLOW(T')={+,),$}

FOLLOW(F)={+,*,),$}

For example, id and left parenthesis are added to FIRST(F) by rule 3 in definition of FIRST with

i=1 in each case, since FIRST(id)=(id) and FIRST('(')= {(} by rule 1. Then by rule 3 with i=1, the

production T -> FT' implies that id and left parenthesis belong to FIRST(T) also.

To compute FOLLOW,we put $ in FOLLOW(E) by rule 1 for FOLLOW. By rule 2 applied

toproduction F-> (E), right parenthesis is also in FOLLOW(E). By rule 3 applied to production E->

TE', $ and right parenthesis are in FOLLOW(E').

3.5 CONSTRUCTION OF PREDICTIVE PARSING TABLES

For any grammar G, the following algorithm can be used to construct the predictive parsing

table. The algorithm is

Input : Grammar G Output :

Parsing table M Method

1. 1.For each production A-> a of the grammar, do steps 2 and 3.

2. For each terminal a in FIRST(a), add A->a, to M[A,a].

3. If e is in First(a), add A->a to M[A,b] for each terminal b in FOLLOW(A). If e is in

FIRST(a) and $ is in FOLLOW(A), add A->a to M[A,$].

4. Make each undefined entry of M be error.

3.6. LL(1) GRAMMAR

The above algorithm can be applied to any grammar G to produce a parsing table M. For some

Grammars, for example if G is left recursive or ambiguous, then M will have at least one multiply-

defined entry. A grammar whose parsing table has no multiply defined entries is said to be LL(1).

It can be shown that the above algorithm can be used to produce for every LL(1) grammar G a

parsing table M that parses all and only the sentences of G. LL(1) grammars have several

distinctive properties. No ambiguous or left recursive grammar can be LL(1). There remains a

question of what should be done in case of multiply defined entries. One easy solution is to

eliminate all left recursion and left factoring, hoping to produce a grammar which will produce no

multiply defined entries in the parse tables. Unfortunately there are some grammars which will

give an LL(1) grammar after any kind of alteration. In general, there are no universal rules to

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

convert multiply defined entries into single valued entries without affecting the language

recognized by the parser.

The main difficulty in using predictive parsing is in writing a grammar for the source language

such that a predictive parser can be constructed from the grammar. Although left recursion

elimination and left factoring are easy to do, they make the resulting grammar hard to read and

difficult to use the translation purposes. To alleviate some of this difficulty, a common

organization for a parser in a compiler is to use a predictive parser for control

constructs and to use operator precedence for expressions.however, if an lr parser generator is

available, one can get all the benefits of predictive parsing and operator precedence automatically.

3.7. ERROR RECOVERY IN PREDICTIVE PARSING

The stack of a nonrecursive predictive parser makes explicit the terminals and nonterminals that

the parser hopes to match with the remainder of the input. We shall therefore refer to symbols on

the parser stack in the following discussion. An error is detected during predictive parsing when

the terminal on top of the stack does not match the next input symbol or when nonterminal A is on

top of the stack, a is the next input symbol, and the parsing table entry M[A,a] is empty.

Panic-mode error recovery is based on the idea of skipping symbols on the input until a token in a

selected set of synchronizing tokens appears. Its effectiveness depends on the choice of

synchronizing set. The sets should be chosen so that the parser recovers quickly from errors that

are likely to occur in practice. Some heuristics are as follows

 As a starting point, we can place all symbols in FOLLOW(A) into the synchronizing set for

nonterminal A. If we skip tokens until an element of FOLLOW(A) is seen and pop A from

the stack, it is likely that parsing can continue.

 It is not enough to use FOLLOW(A) as the synchronizingset for A. Fo example , if semicolons

terminate statements, as in C, then keywords that begin statements may not appear in the

FOLLOW set of the nonterminal generating expressions. A missing semicolon after an

assignment may therefore result in the keyword beginning the next statement being skipped.

Often, there is a hierarchica structure on constructs in a language; e.g., expressions appear

within statement, which appear within bblocks,and so on. We can add to the synchronizing set

of a lower construct the symbols that begin higher constructs. For example, we might add

keywords that begin statements to the synchronizing sets for the nonterminals generaitn

expressions.

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

 If we add symbols in FIRST(A) to the synchronizing set for nonterminal A, then it may be

possible to resume parsing according to A if a symbol in FIRST(A) appears in the input.

 If a nonterminal can generate the empty string, then the production deriving e can be used

as a default. Doing so may postpone some error detection, but cannot cause an error to be

missed. This approach reduces the number of nonterminals that have to be considered

during error recovery.

 If a terminal on top of the stack cannot be matched, a simple idea is to pop the terminal,

issue a message saying that the terminal was inserted, and continue parsing. In effect, this

approach takes the synchronizing set of a token to consist of all other tokens.

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

PARSER

4.1 LR PARSING INTRODUCTION

The "L" is for left-to-right scanning of the input and the "R" is for constructing a rightmost

derivation in reverse.

4.2 WHY LR PARSING:

 LR parsers can be constructed to recognize virtually all programming-language constructs

for which context-free grammars can be written.

 The LR parsing method is the most general non-backtracking shift-reduce parsing method

known, yet it can be implemented as efficiently as other shift-reduce methods.

 The class of grammars that can be parsed using LR methods is a proper subset of the class

of grammars that can be parsed with predictive parsers.

 An LR parser can detect a syntactic error as soon as it is possible to do so on a left-to- right

scan of the input.

The disadvantage is that it takes too much work to constuct an LR parser by hand for a typical

programming-language grammar. But there are lots of LR parser generators available to make this

task easy.

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

4.3. MODELS OF LR PARSERS

The schematic form of an LR parser is shown below.

The program uses a stack to store a string of the form s0X1s1X2...Xmsm where sm is on top. Each

Xi is a grammar symbol and each si is a symbol representing a state. Each state symbol summarizes

the information contained in the stack below it. The combination of the state symbol on top of the

stack and the current input symbol are used to index the parsing table and determine the shiftreduce

parsing decision. The parsing table consists of two parts: a parsing action function action and a goto

function goto. The program driving the LR parser behaves as follows: It determines sm the state

currently on top of the stack and ai the current input symbol. It then consults action[sm,ai], which

can have one of four values:

 shift s, where s is a state

 reduce by a grammar production A -> b

 accept

 error

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

The function goto takes a state and grammar symbol as arguments and produces a state.

For a parsing table constructed for a grammar G, the goto table is the transition function of a

deterministic finite automaton that recognizes the viable prefixes of G. Recall that the viable

prefixes of G are those prefixes of right-sentential forms that can appear on the stack of a

shiftreduce parser because they do not extend past the rightmost handle.

A configuration of an LR parser is a pair whose first component is the stack contents and whose

second component is the unexpended input:

(s0 X1 s1 X2 s2... Xm sm, ai ai+1... an$)

This configuration represents the right-sentential form X1

X1 ... Xm ai ai+1 ...an

in essentially the same way a shift-reduce parser would; only the presence of the states on the stack

is new. Recall the sample parse we did (see Example 1: Sample bottom-up parse) in which we

assembled the right-sentential form by concatenating the remainder of the input buffer to the top of

the stack. The next move of the parser is determined by reading ai and sm, and consulting the

parsing action table entry action[sm, ai]. Note that we are just looking at the state here and no

symbol below it. We'll see how this actually works later.

The configurations resulting after each of the four types of move are as follows:

If action[sm, ai] = shift s, the parser executes a shift move entering the configuration (s0 X1

s1 X2 s2... Xm sm ai s, ai+1... an$)

Here the parser has shifted both the current input symbol ai and the next symbol.

If action[sm, ai] = reduce A -> b, then the parser executes a reduce move, entering the

configuration,

(s0 X1 s1 X2 s2... Xm-r sm-r A s, ai ai+1... an$)

where s = goto[sm-r, A] and r is the length of b, the right side of the production. The parser first

popped 2r symbols off the stack (r state symbols and r grammar symbols), exposing state sm-r. The

parser then pushed both A, the left side of the production, and s, the entry for goto[sm-r, A], onto

the stack. The current input symbol is not changed in a reduce move.

The output of an LR parser is generated after a reduce move by executing the semantic action

associated with the reducing production. For example, we might just print out the production

reduced.

If action[sm, ai] = accept, parsing is completed.

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

4.4. OPERATOR PRECEDENCE PARSING

Precedence Relations

Bottom-up parsers for a large class of context-free grammars can be easily developed

using operator grammars.Operator grammars have the property that no production right side is

empty or has two adjacent nonterminals. This property enables the implementation of efficient

operator-precedence parsers. These parser rely on the following three precedence relations:

Relation Meaning

a <· b a yields precedence to b

a =· b a has the same precedence as b a ·> b

a takes precedence over b

These operator precedence relations allow to delimit the handles in the right sentential

forms: <· marks the left end, =· appears in the interior of the handle, and ·> marks the right end.

Example: The input string:

id1 + id2 * id3

after inserting precedence relations becomes

$ <· id1 ·> + <· id2 ·> * <· id3 ·> $

Having precedence relations allows to identify handles as follows:

 scan the string from left until seeing ·>

 scan backwards the string from right to left until seeing <·

 everything between the two relations <· and ·> forms the handle

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

4.5 OPERATOR PRECEDENCE PARSING ALGORITHM

Initialize: Set ip to point to the first symbol of w$

Repeat: Let X be the top stack symbol, and a the symbol pointed to by ip if $ is

on the top of the stack and ip points to $ then return

else

Let a be the top terminal on the stack, and b the symbol pointed to by ip

if a <· b or a =· b then push

b onto the stack

advance ip to the next input symbol else if

a ·> b then

repeat

pop the stack

until the top stack terminal is related by <· to the

terminal most recently popped

else error() end

4.6 ALGORITHM FOR CONSTRUCTING PRECEDENCE FUNCTIONS

1. Create functions fa for each grammar terminal a and for the end of string symbol;

2. Partition the symbols in groups so that fa and gb are in the same group if a =· b (there can

be symbols in the same group even if they are not connected by this relation)

3. Create a directed graph whose nodes are in the groups, next for each symbols a and b do:

place an edge from the group of gb to the group of fa if a <· b, otherwise if a ·> b place an

edge from the group of fa to that of gb;

4. If the constructed graph has a cycle then no precedence functions exist. When there are

no cycles collect the length of the longest paths from the groups of fa and gb Example:

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

Consider the above table Using the algorithm leads to the following graph:

4.7 SHIFT REDUCE PARSING

A shift-reduce parser uses a parse stack which (conceptually) contains grammar symbols. During

the operation of the parser, symbols from the input are shifted onto the stack. If a prefix of the

symbols on top of the stack matches the RHS of a grammar rule which is the correct rule to use

within the current context, then the parser reduces the RHS of the rule to its LHS,replacing the

RHS symbols on top of the stack with the nonterminal occurring on the LHS of the rule. This shift-

reduce process continues until the parser terminates, reporting either success or failure. It

terminates with success when the input is legal and is accepted by the parser. It terminates with

failure if an error is detected in the input. The parser is nothing but a stack automaton which may

be in one of several discrete states. A state is usually represented simply as an integer. In reality,

the parse stack contains states, rather than

grammar symbols. However, since each state corresponds to a unique grammar symbol, the state

stack can be mapped onto the grammar symbol stack mentioned earlier.

The operation of the parser is controlled by a couple of tables:

4.8 ACTION TABLE

The action table is a table with rows indexed by states and columns indexed by terminal

symbols. When the parser is in some state s and the current lookahead terminal is t, the action

taken by the parser depends on the contents of action[s][t], which can contain four different

kinds of entries:

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

Shift s'

Shift state s' onto the parse stack. Reduce

r

Reduce by rule r. This is explained in more detail below.

Accept

Terminate the parse with success, accepting the input.

Error

Signal a parse error

4.9 GOTO TABLE

The goto table is a table with rows indexed by states and columns indexed by nonterminal

symbols. When the parser is in state s immediately after reducing by rule N, then the next state to

enter is given by goto[s][N].

The current state of a shift-reduce parser is the state on top of the state stack. The detailed

operation of such a parser is as follows:

1. Initialize the parse stack to contain a single state s0, where s0 is the distinguished initial state

of the parser.

2. Use the state s on top of the parse stack and the current lookahead t to consult the action table

entry action[s][t]:

· If the action table entry is shift s' then push state s' onto the stack and advance the input

so that the lookahead is set to the next token.

· If the action table entry is reduce r and rule r has m symbols in its RHS, then pop m

symbols off the parse stack. Let s' be the state now revealed on top of the parse stack

and N be the LHS nonterminal for rule r. Then consult the goto table and

push the state given by goto[s'][N] onto the stack. The lookahead token is not

changed by this step.

 If the action table entry is accept, then terminate the parse with success.

 If the action table entry is error, then signal an error.

3. Repeat step (2) until the parser terminates.

For example, consider the following simple grammar

0) $S: stmt <EOF>

1) stmt: ID ':=' expr

2) expr: expr '+' ID

3) expr: expr '-' ID

4) expr: ID

which describes assignment statements like a:= b + c - d. (Rule 0 is a special augmenting

production added to the grammar).

One possible set of shift-reduce parsing tables is shown below (sn denotes shift n, rn denotes

reduce n, acc denotes accept and blank entries denote error entries):

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

Parser Tables

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

4.10 SLR PARSER

An LR(0) item (or just item) of a grammar G is a production of G with a dot at some position of the

right side indicating how much of a production we have seen up to a given point.

For example, for the production E -> E + T we would have the following items: [E ->

.E + T]

[E -> E. + T]

[E -> E +. T]

[E -> E + T.]

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

4.11 CONSTRUCTING THE SLR PARSING TABLE

To construct the parser table we must convert our NFA into a DFA. The states in the LR table will

be the e-closures of the states corresponding to the items SO...the process of creating the LR state

table parallels the process of constructing an equivalent DFA from a machine with e-transitions.

Been there, done that - this is essentially the subset construction algorithm so we are in familiar

territory here.

We need two operations: closure() and

goto().

closure()

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by the

two rules: Initially every item in I is added to closure(I)

If A -> a.Bb is in closure(I), and B -> g is a production, then add the initial item [B -> .g] to I, if it is

not already there. Apply this rule until no more new items can be added to closure(I).

From our grammar above, if I is the set of one item {[E'-> .E]}, then closure(I) contains: I0: E'

-> .E

E -> .E + T E ->

.T

T -> .T * F T ->

.F

F -> .(E)

F -> .id

goto()

goto(I, X), where I is a set of items and X is a grammar symbol, is defined to be the closure of the

set of all items [A -> aX.b] such that [A -> a.Xb] is in I. The idea here is fairly intuitive: if I is the

set of items that are valid for some viable prefix g, then goto(I, X) is the set of items that are valid

for the viable prefix gX.

4.12 SETS-OF-ITEMS-CONSTRUCTION

To construct the canonical collection of sets of LR(0) items for

augmented grammar G'.

procedure items(G') begin

C := {closure({[S' -> .S]})};

repeat

for each set of items in C and each grammar symbol X such

that goto(I, X) is not empty and not in C do

add goto(I, X) to C;

until no more sets of items can be added to C end;

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

4.13 ALGORITHM FOR CONSTRUCTING AN SLR PARSING TABLE

Input: augmented grammar G'

Output: SLR parsing table functions action and goto for G'

Method:

Construct C = {I0, I1 , ..., In} the collection of sets of LR(0) items for G'. State i is

constructed from Ii:

if [A -> a.ab] is in Ii and goto(Ii, a) = Ij, then set action[i, a] to "shift j". Here a must be a

terminal.

if [A -> a.] is in Ii, then set action[i, a] to "reduce A -> a" for all a in FOLLOW(A). Here A may

not be S'.

if [S' -> S.] is in Ii, then set action[i, $] to "accept"

If any conflicting actions are generated by these rules, the grammar is not SLR(1) and the

algorithm fails to produce a parser. The goto transitions for state i are constructed for all

nonterminals A using the rule: If goto(Ii, A)= Ij, then goto[i, A] = j.

All entries not defined by rules 2 and 3 are made "error".

The inital state of the parser is the one constructed from the set of items containing [S' -> .S]. Let's

work an example to get a feel for what is going on,

An Example

(1) E -> E * B

(2) E -> E + B

(3) E -> B (4) B

-> 0 (5) B -> 1

The Action and Goto Table The two LR(0) parsing tables for this grammar look as follows:

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

5.1 CANONICAL LR PARSING

By splitting states when necessary, we can arrange to have each state of an LR parser indicate

exactly which input symbols can follow a handle a for which there is a possible reduction to A. As

the text points out, sometimes the FOLLOW sets give too much informationand doesn't (can't)

discriminate between different reductions.

The general form of an LR(k) item becomes [A -> a.b, s] where A -> ab is a production and s is a

string of terminals. The first part (A -> a.b) is called the core and the second part is the lookahead.

In LR(1) |s| is 1, so s is a single terminal.

A -> ab is the usual righthand side with a marker; any a in s is an incoming token in which we are

interested. Completed items used to be reduced for every incoming token in FOLLOW(A), but now

we will reduce only if the next input token is in the lookahead set s..if we get two productions A ->

a and B -> a, we can tell them apart when a is a handle on the stack if the corresponding completed

items have different lookahead parts. Furthermore, note that the lookahead has no effect for an item

of the form [A -> a.b, a] if b is not e. Recall that our problem occurs for completed items, so what

we have done now is to say that an item of the form [A -> a., a] calls for a reduction by A -> a only

if the next input symbol is a. More formally, an LR(1) item [A -> a.b, a] is valid for a viable prefix g

if there is a derivation

S =>* s abw, where g = sa, and either a is the first symbol of w, or w is e and a is $.

5.2 ALGORITHM FOR CONSTRUCTION OF THE SETS OF LR(1) ITEMS

Input: grammar G'

Output: sets of LR(1) items that are the set of items valid for one or more viable prefixes of G'

Method:

closure(I) begin

repeat

for each item [A -> a.Bb, a] in I, each

production B -> g in G', and each

terminal b in FIRST(ba)

such that [B -> .g, b] is not in I do add

[B -> .g, b] to I;

until no more items can be added to I; end;

5.3 goto(I, X)

begin

let J be the set of items [A -> aX.b, a] such that [A ->

a.Xb, a] is in I

return closure(J); end;

procedure items(G') begin

C := {closure({S' -> .S, $})};

repeat

for each set of items I in C and each grammar symbol X such that

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

goto(I, X) is not empty and not in C do

add goto(I, X) to C

until no more sets of items can be added to C; end;

An example,

Consider the following grammer, S’->S

S->CC C-

>cC C->d

Sets of LR(1) items

I0: S’->.S,$ S-

>.CC,$

C->.Cc,c/d C-

>.d,c/d

I1:S’->S.,$

I2:S->C.C,$

C->.Cc,$

C->.d,$

I3:C->c.C,c/d C-

>.Cc,c/d

C->.d,c/d

I4: C->d.,c/d

I5: S->CC.,$

I6: C->c.C,$

C->.cC,$

C->.d,$

I7:C->d.,$

I8:C->cC.,c/d

I9:C->cC.,$

Here is what the corresponding DFA looks like

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

5.4 ALGORITHM FOR CONSTRUCTION OF THE CANONICAL LR PARSING

TABLE

Input: grammar G'

Output: canonical LR parsing table functions action and goto

1. Construct C = {I0, I1 , ..., In} the collection of sets of LR(1) items for G'.State i is

constructed from Ii.

2. if [A -> a.ab, b>] is in Ii and goto(Ii, a) = Ij, then set action[i, a] to "shift j". Here a must

be a terminal.

3. if [A -> a., a] is in Ii, then set action[i, a] to "reduce A -> a" for all a in

FOLLOW(A). Here A may not be S'.

4. if [S' -> S.] is in Ii, then set action[i, $] to "accept"

5. If any conflicting actions are generated by these rules, the grammar is not LR(1) and

the algorithm fails to produce a parser.

6. The goto transitions for state i are constructed for all nonterminals A using the rule:

If goto(Ii, A)= Ij, then goto[i, A] = j.

7. All entries not defined by rules 2 and 3 are made "error".

8. The inital state of the parser is the one constructed from the set of items

containing [S' -> .S, $].

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

5.5.LALR PARSER:

We begin with two observations. First, some of the states generated for LR(1) parsing have the

same set of core (or first) components and differ only in their second component, the lookahead

symbol. Our intuition is that we should be able to merge these states and reduce the number of

states we have, getting close to the number of states that would be generated for LR(0) parsing. This

observation suggests a hybrid approach: We can construct the canonical LR(1) sets of items and

then look for sets of items having the same core. We merge these sets with common cores into one

set of items. The merging of states with common cores can never produce a shift/reduce conflict

that was not present in one of the original states because shift actions depend only on the core, not

the lookahead. But it is possible for the merger to produce a reduce/reduce conflict.

Our second observation is that we are really only interested in the lookahead symbol in places

where there is a problem. So our next thought is to take the LR(0) set of items and add lookaheads

only where they are needed. This leads to a more efficient, but much more complicated method.

5.6 ALGORITHM FOR EASY CONSTRUCTION OF AN LALR TABLE

Input: G'

Output: LALR parsing table functions with action and goto for G'.

Method:

1. Construct C = {I0, I1 , ..., In} the collection of sets of LR(1) items for G'.

2. For each core present among the set of LR(1) items, find all sets having that core and

replace these sets by the union.

3. Let C' = {J0, J1 , ..., Jm} be the resulting sets of LR(1) items. The parsing actions for

state i are constructed from Ji in the same manner as in the construction of the canonical

LR parsing table.

4. If there is a conflict, the grammar is not LALR(1) and the algorithm fails.

5. The goto table is constructed as follows: If J is the union of one or more sets of LR(1)

items, that is, J = I0U I1 U ... U Ik, then the cores of goto(I0, X), goto(I1, X), ..., goto(Ik,

X) are the same, since I0, I1 , ..., Ik all have the same core. Let K be the union of all sets

of items having the same core asgoto(I1, X).

6. Then goto(J, X) = K.

Consider the above example,

I3 & I6 can be replaced by their union I36:C-

>c.C,c/d/$

C->.Cc,C/D/$ C-

>.d,c/d/$ I47:C-

>d.,c/d/$

I89:C->Cc.,c/d/$

Parsing Table

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

state c d $ S C

0 S36 S47 1 2

1 Accept

2 S36 S47 5

36 S36 S47 89

47 R3 R3

5 R1

89 R2 R2 R2

5.7 HANDLING ERRORS

The LALR parser may continue to do reductions after the LR parser would have spotted an error,

but the LALR parser will never do a shift after the point the LR parser would have discovered the

error and will eventually find the error.

5.8 DANGLING ELSE

The dangling else is a problem in computer programming in which an optional else clause in an If–

then(–else) statement results in nested conditionals being ambiguous. Formally, the context-

free grammar of the language is ambiguous, meaning there is more than one correct parse tree.

In many programming languages one may write conditionally executed code in two forms: the if-

then form, and the if-then-else form – the else clause is optional:

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Conditional_(computer_programming)#If.E2.80.93then.28.E2.80.93else.29
http://en.wikipedia.org/wiki/Conditional_(computer_programming)#If.E2.80.93then.28.E2.80.93else.29
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Ambiguous_grammar
http://en.wikipedia.org/wiki/Programming_language

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

Consider the grammar:

S ::= E $

E ::= E + E

| E * E

| (E)

| id

| num

and four of its LALR(1) states:

I0: S ::= . E $?

E ::= . E + E +*$ I1: S ::= E . $? I2: E ::= E * . E +*$ E ::= .

E * E +*$ E ::= E . + E +*$ E ::= . E + E +*$ E ::= . (

E) +*$ E ::= E . * E +*$ E ::= . E * E +*$

E ::= . id +*$ E ::= . (E) +*$

E ::= . num +*$ I3: E ::= E * E . +*$ E ::= . id +*$

E ::= E . + E +*$ E ::= . num +*$

E ::= E . * E +*$

Here we have a shift-reduce error. Consider the first two items in I3. If we have a*b+c and we

parsed a*b, do we reduce using E ::= E * E or do we shift more symbols? In the former case we get

a parse tree (a*b)+c; in the latter case we get a*(b+c). To resolve this conflict, we can specify that *

has higher precedence than +. The precedence of a grammar production is equal to the precedence

of the rightmost token at the rhs of the production. For example, the precedence of the production E

::= E * E is equal to the precedence of the operator *, the precedence of the production E ::= (E) is

equal to the precedence of the token), and the precedence of the production E ::= if E then E else E

is equal to the precedence of the token else. The idea is that if the look ahead has higher precedence

than the production currently used, we shift. For example, if we are parsing E + E using the

production rule E ::= E + E and the look ahead is *, we shift *. If the look ahead has the same

precedence as that of the current production and is left associative, we reduce, otherwise we shift.

The above grammar is valid if we define the precedence and associativity of all the operators. Thus,

it is very important when you write a parser using CUP or any other LALR(1) parser generator to

specify associativities and precedence’s for most tokens (especially for those used as operators).

Note: you can explicitly define the precedence of a rule in CUP using the %prec directive:

E ::= MINUS E %prec UMINUS

where UMINUS is a pseudo-token that has higher precedence than TIMES, MINUS etc, so that -

1*2 is equal to (-1)*2, not to -(1*2).

Another thing we can do when specifying an LALR(1) grammar for a parser generator is error

recovery. All the entries in the ACTION and GOTO tables that have no content correspond to

syntax errors. The simplest thing to do in case of error is to report it and stop the parsing. But we

would like to continue parsing finding more errors. This is called error recovery. Consider the

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

grammar:

S ::= L = E ;

| { SL } ;

| error ; SL ::=

S ;

| SL S ;

The special token error indicates to the parser what to do in case of invalid syntax for S (an invalid

statement). In this case, it reads all the tokens from the input stream until it finds the first semicolon.

The way the parser handles this is to first push an error state in the stack. In case of an error, the

parser pops out elements from the stack until it finds an error state where it can proceed. Then it

discards tokens from the input until a restart is possible. Inserting error handling productions in the

proper places in a grammar to do good error recovery is considered very hard.

5.9 LR ERROR RECOVERY

An LR parser will detect an error when it consults the parsing action table and find a blank or error

entry. Errors are never detected by consulting the goto table. An LR parser will detect an error as

soon as there is no valid continuation for the portion of the input thus far scanned. A canonical LR

parser will not make even a single reduction before announcing the error. SLR and LALR parsers

may make several reductions before detecting an error, but they will never shift an erroneous input

symbol onto the stack.

5.10 PANIC-MODE ERROR RECOVERY

We can implement panic-mode error recovery by scanning down the stack until a state s with a goto

on a particular nonterminal A is found. Zero or more input symbols are then discarded until a

symbol a is found that can legitimately follow A. The parser then stacks the state GOTO(s, A) and

resumes normal parsing. The situation might exist where there is more than one choice for the

nonterminal A. Normally these would be nonterminals representing major program pieces, e.g. an

expression, a statement, or a block. For example, if A is the nonterminal stmt, a might be semicolon

or }, which marks the end of a statement sequence. This method of error recovery attempts to

eliminate the phrase containing the syntactic error. The parser determines that a string derivable

from A contains an error. Part of that string has already been processed, and the result of this

processing is a sequence of states on top of the stack. The remainder of the string is still in the input,

and the parser attempts to skip over the remainder of this string by looking for a symbol on the input

that can legitimately follow A. By removing states from the stack, skipping over the input, and

pushing GOTO(s, A) on the stack, the parser pretends that if has found an instance of A and

resumes normal parsing.

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

5.11 PHRASE-LEVEL RECOVERY

Phrase-level recovery is implemented by examining each error entry in the LR action table and

deciding on the basis of language usage the most likely programmer error that would give rise to

that error. An appropriate recovery procedure can then be constructed; presumably the top of the

stack and/or first input symbol would be modified in a way deemed appropriate for each error entry.

In designing specific error-handling routines for an LR parser, we can fill in each blank entry in the

action field with a pointer to an error routine that will take the appropriate action selected by the

compiler designer.

The actions may include insertion or deletion of symbols from the stack or the input or both, or

alteration and transposition of input symbols. We must make our choices so that the LR parser will

not get into an infinite loop. A safe strategy will assure that at least one input symbol will be

removed or shifted eventually, or that the stack will eventually shrink if the end of the input has

been reached. Popping a stack state that covers a non terminal should be avoided, because this

modification eliminates from the stack a construct that has already been successfully parsed.

TEXT BOOKS:

1. Compilers, Principles Techniques and Tools- Alfred V Aho, Monical S Lam, Ravi Sethi,

Jeffrey D. Ullman,2
nd

 ed, Pearson,2007.

2. Principles of compiler design, V. Raghavan, 2
nd

 ed, TMH, 2011.

3. Principles of compiler design, 2
nd

 ed, Nandini Prasad, Elsevier

REFERENCE BOOKS:

1. http://www.nptel.iitm.ac.in/downloads/106108052/

2. Compiler construction, Principles and Practice, Kenneth C Louden, CENGAGE

3. Implementations of Compiler, A new approach to Compilers including the algebraic

methods, Yunlinsu, SPRINGER

http://www.nptel.iitm.ac.in/downloads/106108052/

