
S.E. (Computer Engg.) (Second Semester) Examination 2017

PRINCIPLES OF PROGRAMMING LANGUAGES

(2015 Pattern)

Nov / Dec 2017

Time : 2 Hours Maximum Marks : 50

Q.1 a) List the Programming paradigms. For any three state which programming

languages are based on them and how ?. [6]

Ans

Programming paradigms are a way to classify programming languages based on their

features. Languages can be classified into multiple paradigms.

 1. Procedural Programming Language Construct used: procedures

 2. Functional Programming Language Construct used: functions

 3. Abstract Data Type Programming Language Construct used: definition of abstract

data types

 4. Module Based Programming Language Construct used: modularization (grouping

of entities) of Variables Functions Procedures Types

 5. Object oriented Programming Language Construct used: classes and objects

 6. Generic Programming Language Construct used: templates in C

 7. Declarative or logical Programming

Q.1 b) What are benefits of implementing built-in data types in programming

languages ? State the built-in data types implemented by C++. [7]

Ans.

Benefits :

1. Hiding underlying representation

2. Correct use of variables which can be checked at compile time

3. Resolution of overloaded operators

4. Accuracy control

Built-In Data Types in C++ are:

a. booleans, i.e., truth values TRUE and FALSE, along with the set of operations defined by

Boolean algebra;

b. characters, e.g., the set of ASCII characters;

c. integers, e.g., the set of 16-bit values in the range <-32768, 37767>; and

d. reals, e.g., floating point numbers with given size and precision

Or

Q.2 a) What is interpretation and translation process ? With neat diagram state the

purpose of each activity in language processing with interpretation and translation.

[6]

Ans

Interpretation Process :

1. An interpreter converts the source code into machine language at the same time the

program runs. This is illustrated below:

2. In this a special program called an interpreter converts the source code, combines with

runtime libraries, and executes the resulting machine instructions all during runtime.

3. This conversion process makes the program run slower.

4. It stops/gives error when it encounters the first mistake in any line of code. This

process is interpretation.

Translation Process

During the translation process the translator translates the text from the source language

to target language

1. A compiler takes the program code (source code) and converts the source code to a

machine language module (called an object file).

2. Another specialized program, called a linker, combines this object file with other

previously compiled object files (in particular run-time modules) to create an

executable file.

3. This executable file is then loaded into the memory by the loader.

Q.2 b) What are abstract data types ? How C++ implements abstract data types ? Give

example.7M

Ans.

1. Abstract Data type (ADT) is a type (or class) for objects whose behavior is defined

by a set of value and a set of operations.

2. The definition of ADT only mentions what operations are to be performed but not

how these operations will be implemented.

3. It does not specify how data will be organized in memory and what algorithms will

be used for implementing the operations.

4. It is called “abstract” because it gives an implementation independent view.

5. In C++, classes provides great level of data abstraction. They provide sufficient

public methods to the outside world to play with the functionality of the object and

to manipulate object data, i.e., state without actually knowing how class has been

implemented internally.

6. In C++, we use classes to define our own abstract data types (ADT).

Eg.

#include <iostream>

using namespace std;

class Adder {

 public:

 // constructor

 Adder(int i = 0) { total = i; }

 // interface to outside world

 void addNum(int number) { total += number; }

 // interface to outside world

 int getTotal() { return total; };

 private:

 // hidden data from outside world

 int total;

};

int main() {

 Adder a;

 a.addNum(10);

 a.addNum(20);

 a.addNum(30);

 cout << "Total " << a.getTotal() <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Total 60

Above class adds numbers together, and returns the sum. The public members -

addNum and getTotal are the interfaces to the outside world and a user needs to know

them to use the class. The private member total is something that the user doesn't need

to know about, but is needed for the class to operate properly.

Q.3 a) What are generic data structures and generic algorithms ? How C++

implements this generic programming constructs ? Give example of each. [6M]

Ans.
Generic algorithms and Generic data structures
• Data Structures that works on any data type

C++ Implementation
C++ Implements the generic programming construct using Templates.
In C++, a Standard Template Library (STL) provides similar facilities. For example, an
example of using generic vector class for strings can be defined as:

#include <vector>
#include <string>
using namespace std;
main()
{
 vector<string> V;
 V.push_back("10");
 V.push_back("20");
 V.push_back("30");
 V.pop_back();

 cout << "Loop by index:" << endl;
 int i;
 for(i=0; i < V.size(); i++)
 {
 cout << V[i] << endl;
 }
}

Generic Algortihms

1. A generic algorithm is one that can work with many possible data structures and
many possible kinds of data.

2. Eg : Function Templates
3. To use any of the generic algorithms, you must first include the appropriate header

file. The majority of the functions are defined in the header file algorithm.
Eg.
/ sort algorithm example
#include <iostream> // std::cout
#include <algorithm> // std::sort
#include <vector> // std::vector

bool myfunction (int i,int j) { return (i<j); }

struct myclass {
 bool operator() (int i,int j) { return (i<j);}
} myobject;

int main () {
 int myints[] = {32,71,12,45,26,80,53,33};
 std::vector<int> myvector (myints, myints+8);

 // using default comparison (operator <):
 std::sort (myvector.begin(), myvector.begin()+4);

 // using function as comp
 std::sort (myvector.begin()+4, myvector.end(), myfunction);

 // using object as comp
 std::sort (myvector.begin(), myvector.end(), myobject);

 // print out content:
 std::cout << "myvector contains:";

 for (std::vector<int>::iterator it=myvector.begin(); it!=myvector.end(); ++it)
 std::cout << ' ' << *it;
 std::cout << '\n';

 return 0;
 }

Q.3b Justify the meaning of each characteristic of Java in the statement “Java is

simple, architecture neutral, portable, interpreted and robust and secured

programming language”. [6M]

Ans.

Simple

According to Sun, Java language is simple because:

 syntax is based on C++ (so easier for programmers to learn it after C++).

 It has removed many confusing and/or rarely-used features e.g., explicit pointers,

operator overloading etc.

 No need to remove unreferenced objects because there is Automatic Garbage

Collection in java.

Architecture Neutral

 There is no implementation dependent feature e.g. size of primitive types is fixed.

 In C programming, int data type occupies 2 bytes of memory for 32-bit architecture

and 4 bytes of memory for 64-bit architecture. But in java, it occupies 4 bytes of

memory for both 32 and 64 bit architectures.

Portable

 We may carry the java bytecode to any platform.

Interpreted

 The Java compiler generates byte-codes, rather than native machine code.

 To actually run a Java program, you use the Java interpreter to execute the compiled

byte-codes. Java byte-codes provide an architecture-neutral object file format.

 The code is designed to transport programs efficiently to multiple platforms.

Robust

 Robust simply means strong. Java uses strong memory management.

 There are lack of pointers that avoids security problem. There is automatic garbage

collection in java.

 There is exception handling and type checking mechanism in java.

All these points makes java robust.

Secure

 Java is secured because: No explicit pointer

 Access restrictions are enforced (public, private)

 Byte codes are verified, which copes with the threat of a hostile compiler

Or

Q.4 a) What are challenges for Programming in Large ? How these are addressed by

programming languages. [6M]

Ans.

1. Setting up modules that will not need altering in the event of probable changes

(Modularity)

2. Abstraction-creating skills. (Encapsulation)

3. Better Correlation between physical program and logical design structure

(Interface).

Address by Programming Languages.

Encapsulation

1. In Pascal is achieved by Procedures and Functions

2. In C by Files (Header files)

3. In C++ by Class

4. In Ada by Package

Q.4 b) Write a program in Java to perform the addition of two matrices

(multidimensional arrays) and set the diagonal elements of resultant matrix to 0.

[6M]

Ans

import java.util.Scanner;

class AddTwoMatrix

{

 public static void main(String args[])

 {

 int m, n, c, d;

 Scanner in = new Scanner(System.in);

 System.out.println("Enter the number of rows and columns of matrix");

 m = in.nextInt();

 n = in.nextInt();

 int first[][] = new int[m][n];

 int second[][] = new int[m][n];

 int sum[][] = new int[m][n];

 System.out.println("Enter the elements of first matrix");

 for (c = 0 ; c < m ; c++)

 for (d = 0 ; d < n ; d++)

 first[c][d] = in.nextInt();

 System.out.println("Enter the elements of second matrix");

 for (c = 0 ; c < m ; c++)

 for (d = 0 ; d < n ; d++)

 second[c][d] = in.nextInt();

 for (c = 0 ; c < m ; c++)

 for (d = 0 ; d < n ; d++)

 sum[c][d] = first[c][d] + second[c][d];

 System.out.println("Sum of entered matrices:-");

 for (c = 0 ; c < m ; c++)

 {

 for (d = 0 ; d < n ; d++)

 System.out.print(sum[c][d]+"\t");

 System.out.println();

 }

 }

System.out.println("Setting the diagonal elements of resultant matrix to 0:-");

 for (c = 0 ; c < m ; c++)

 {

 for (d = 0 ; d < n ; d++)

 if(c==d)

 sum[c][d] = 0;

 }

 }

 System.out.println("Output After Setting :-");

 for (c = 0 ; c < m ; c++)

 {

 for (d = 0 ; d < n ; d++)

 System.out.print(sum[c][d]+"\t");

 System.out.println();

 }

 }

}

Q.5 a) Explain the concept of dynamic dispatch while overriding method in

inheritance. Give example and advantages of doing so. [5M]

Ans

Method Overriding is an example of runtime polymorphism. When a parent class reference

points to the child class object then the call to the overridden method is determined at

runtime, because during method call which method(parent class or child class) is to be

executed is determined by the type of object. This process in which call to the overridden

method is resolved at runtime is known as dynamic method dispatch.

Eg.

class ABC{

 //Overridden method

 public void disp()

 {

 System.out.println("disp() method of parent class");

 }

}

class Demo extends ABC{

 //Overriding method

 public void disp(){

 System.out.println("disp() method of Child class");

 }

 public void newMethod(){

 System.out.println("new method of child class");

 }

 public static void main(String args[]) {

 /* When Parent class reference refers to the parent class object

 * then in this case overridden method (the method of parent class)

 * is called.

 */

 ABC obj = new ABC();

 obj.disp();

 /* When parent class reference refers to the child class object

 * then the overriding method (method of child class) is called.

 * This is called dynamic method dispatch and runtime polymorphism

 */

 ABC obj2 = new Demo();

 obj2.disp();

 }

}

Output:

disp() method of parent class

disp() method of Child class

In the above example the call to the disp() method using second object (obj2) is runtime

polymorphism (or dynamic method dispatch).

Advantages of Dynamic Method Dispatch

1. Dynamic method dispatch allow Java to support overriding of methods which is

central for run-time polymorphism.

2. It allows a class to specify methods that will be common to all of its derivatives,

while allowing subclasses to define the specific implementation of some or all of

those methods.

3. It also allow subclasses to add its specific methods subclasses to define the specific

implementation of some.

Q.5 b) Write a program in Java which defines Class CONVERSION which converts one

unit of length into another using multiplying factor. This class has data members

unit_in, unit_out and multiplier. When user creates object, constructor accepts value

of multiplier and sets this for further conversion of units. The object uses methods to

get value of unit_in and output value of unit_out and stores these in class variables.

[8M]

Ans.

import java.util.Scanner;

public class CONVERSION

{

 float unit_in, unit_out, multiplier;

 public static Scanner scan;

 public CONVERSION(float multiplier_in)

 {

 multiplier = multiplier_in;

 }

 public void get_values()

 {

 System.out.println("Enter value of unit_in:");

 unit_in = scan.nextFloat();

 }

 public void convert_units()

 {

 unit_out = unit_in * multiplier;

 System.out.println("unit_out="+unit_out);

 }

 public static void main(String args[])

 {

 scan = new Scanner(System.in);

 CONVERSION obj = new CONVERSION(3.28); //meter to feet

 obj.get_values();

 obj.convert_units();

 }

}

Or

Q.6 a) State two major differences in class and an interface. “Interface gives multiple

inheritance facility just as in C++” justify. 7M

Ans.

Basis for Comparison Class Interface
Basic A class is instantiated to

create objects.
An interface can never be
instantiated as the methods
are unable to perform any
action on invoking.

Keyword class interface
Access specifier The members of a class can

be private, public or
protected

The members of an interface
are always public.

Methods The methods of a class are
defined to perform a specific
action

The methods in an interface
are purely abstract.

Implement/extend A class can implement any
number of interface and can
extend only one class.

An interface can extend
multiple interfaces but
cannot implement any
interface.

Constructor A class can have
constructors to initialize the
variables.

An interface can never have
a constructor as there is
hardly any variable to
initialize.

When one class extends more than one classes then this is called multiple inheritance . For

example: Class C extends class A and B then this type of inheritance

 is known as multiple inheritance. Java doesn’t allow multiple inheritance. In this article, we

will discuss why java doesn’t allow multiple inheritance and how we can use interfaces

instead of classes to achieve the same purpose

Why Java doesn’t support multiple inheritance?

 C++, Common lisp and few other languages supports multiple inheritance while java

doesn’t support it. Java doesn’t allow multiple inheritance to avoid the ambiguity

caused by it. One of the example of such problem is the diamond problem that

occurs in multiple inheritance.

 Interface gives multiple inheritance facility just as in C++ because we can implement

more than one interface in our program because that doesn’t cause any ambiguity.

Eg.

interface X

 {

 public void myMethod();

 }

interface Y

 {

 public void myMethod();

 }

class JavaExample implements X, Y

 {

 public void myMethod()

 {

 System.out.println("Implementing more than one interfaces");

 }

 public static void main(String args[])

 {

 JavaExample obj = new JavaExample();

 obj.myMethod();

 }

 }

Output:

Implementing more than one interfaces

Q.6 b) State the use of the following constructs in Java with example:

1. final method declaration in super class while inheritance

2. abstract class declaration.

3. method overriding [6]

Ans

1. final method declaration in super class while inheritance

While method overriding is one of Java’s most powerful features, there will be times

when you will want to prevent it from occurring. To disallow a method from being

overridden, specify final as a modifier at the start of its declaration.

Methods declared as final cannot be overridden.

The following fragment illustrates final:

class A

 {

 final void meth()

 {

 System.out.println("This is a final method.");

 }

 }

 class B extends A

 {

 void meth()

 {

 // ERROR! Can't override. System.out.println("Illegal!");

 }

 }

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do

so, a compile-time error will result. Methods declared as final can sometimes provide a

performance enhancement: The compiler is free to inline calls to them because it knows

they will not be overridden by a subclass.

2.abstract class declaration….explanation in above question

3. method overriding [6]…answer in above question

Q.7 a) Define the term exception, State the advantage of exception handling. What

are types of exceptions? [6]

Ans

Exception in Java is an indication of some unusual event. It usually indicates the error.

Advantages of Exception Handling:

1. Using exceptions the main application logic can be separated out from the code which

may cause some unusual conditions.

2. When calling method encounters some error then the exception can be thrown. This

avoids crashing of the entire application abruptly.

3. Using exception handling, various types of errors in the source code can be grouped

together.

4. Problems occurring at the lower level can be handled by the higher methods

Q.7 b) State the use of the following methods for programming applet. Give example

of using each of these, init(),. Start(), paint(), stop(), destroy(), update(). (6 Marks)

Ans

init

 − This method is intended for whatever initialization is needed for your applet. It is

called after the param tags inside the applet tag have been processed.

start

 − This method is automatically called after the browser calls the init method. It is

also called whenever the user returns to the page containing the applet after having gone

off to other pages.

stop

 − This method is automatically called when the user moves off the page on which the

applet sits. It can, therefore, be called repeatedly in the same applet.

destroy

 − This method is only called when the browser shuts down normally. Because applets

are meant to live on an HTML page, you should not normally leave resources behind after a

user leaves the page that contains the applet

 paint

 − Invoked immediately after the start() method, and also any time the applet needs to

repaint itself in the browser. The paint() method is actually inherited from the java.awt.

import java.awt.event.MouseListener;

import java.awt.event.MouseEvent;

import java.applet.Applet;

import java.awt.Graphics;

public class ExampleEventHandling extends Applet implements MouseListener

 {

 StringBuffer strBuffer;

 public void init()

 {

 addMouseListener(this);

 strBuffer = new StringBuffer();

 addItem("initializing the apple ");

 }

 public void start()

 {

 addItem("starting the applet ");

 }

 public void stop()

 {

 addItem("stopping the applet ");

 }

 public void destroy()

 {

 addItem("unloading the applet");

 }

 void addItem(String word)

 {

 System.out.println(word);

 strBuffer.append(word);

 repaint();

 }

 public void paint(Graphics g)

 {

 // Draw a Rectangle around the applet's display area.

 g.drawRect(0, 0, getWidth() - 1, getHeight() - 1);

 // display the string inside the rectangle.

 g.drawString(strBuffer.toString(), 10, 20);

 }

 public void mouseEntered(MouseEvent event)

 { }

 public void mouseExited(MouseEvent event)

 { }

 public void mousePressed(MouseEvent event)

 { }

 public void mouseReleased(MouseEvent event)

 { }

 public void mouseClicked(MouseEvent event)

 {

 addItem("mouse clicked! ");

 }

 } //class close

Or

8.a) What is difference between byte streams and character streams? Demonstrate
the use of console class to get inputs and show results. (6 Marks)
Ans

import java.io.Console;

class ReadStringTest
{
 public static void main(String args[])
 {
 Console c=System.console();
 System.out.println("Enter your name: ");
 String n=c.readLine();
 System.out.println("Welcome "+n);
 }
}

8b) Write a program in Java to calculate the value of ((x + y)/(x – y)). Program should
prevent the condition x – y = 0. (6 Marks)
Ans

class ExceptionDemo
{
 static void fun(int x, int y)
 {
 int c;
 try
 {
 if((x-y)==0)
 throw new ArithmeticException();
 else

Sr. No Byte Stream Character Steam
1 The byte stream is used for inputting and

outputting the bytes
The character stream is used for
inputting and outputting the characters

2 There are two super classes used in byte
stream and those are- InputStream and
OutputStream

There are two super classes used in
character stream and those are- Reader
and Writer class

3 A byte is a 8-bit number type that can
represent values from -127 to 127. Only
ASCII values can be represented with
exactly 8 bits

A character is 16 bit in size that can
represent Unicode

4 Data only ASCII format can be handled Data in Unicode can be handled.

 c = ((x + y)/(x - y));

 }
 catch(ArithmeticException e)
 {
 System.out.println("Caught Exception: "+ e);
 }
 }
 public static void main(String args[])
 {
 fun(2,2);
 }
}//class ends

