
 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

PUNE VIDYARTHI GRIHA’s

COLLEGE OF ENGINEERING
(Approved by AICTE, Accredited by NAAC, Affiliated to SPPU)

NASHIK – 04.

COMPILER NOTES

UNIT - I

DEPARTMENT OF COMPUTER ENGINEERING

AY – 2018-19

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

m Source pg
Compiler

target

UNIT -1

Syllabus - Introduction to compilers Design issues, passes, phases, symbol table Preliminaries

Memory management, Operating system support for compiler, Lexical Analysis Tokens,

Regular Expressions, Process of Lexical analysis, Block Schematic, Automatic construction of

lexical analyzer using LEX, LEX features and specification

1.1 OVERVIEW OF LANGUAGE PROCESSING SYSTEM

1.2 Preprocessor

A preprocessor produce input to compilers. They may perform the following functions.

1. Macro processing: A preprocessor may allow a user to define macros that are short hands for

longer constructs.

2. File inclusion: A preprocessor may include header files into the program text.

3. Rational preprocessor: these preprocessors augment older languages with more modern

flow-of-control and data structuring facilities.

4. Language Extensions: These preprocessor attempts to add capabilities to the language by

certain amounts to build-in macro

1.3 COMPILER

Compiler is a translator program that translates a program written in (HLL) the source

program and translate it into an equivalent program in (MLL) the target program. As an important

part of a compiler is error showing to the programmer.

pgm

Error msg

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

Compiler

Obj pgm input Obj pgm opj pgm output

Executing a program written n HLL programming language is basically of two parts. the source

program must first be compiled translated into a object program. Then the results object program is

loaded into a memory executed.

Source pgm obj pgm

1.4 ASSEMBLER: programmers found it difficult to write or read programs in machine

language. They begin to use a mnemonic (symbols) for each machine instruction, which they

would subsequently translate into machine language. Such a mnemonic machine language is

now called an assembly language. Programs known as assembler were written to automate the

translation of assembly language in to machine language. The input to an assembler program is

called source program, the output is a machine language translation (object program).

1.5 INTERPRETER: An interpreter is a program that appears to execute a source program as if

it were machine language.

Languages such as BASIC, SNOBOL, LISP can be translated using interpreters. JAVA also uses

interpreter. The process of interpretation can be carried out in following phases.

1. Lexical analysis

2. Synatx analysis

3. Semantic analysis

4. Direct Execution

Advantages:

 Modification of user program can be easily made and implemented as execution proceeds.

Type of object that denotes a various may change dynamically.

Debugging a program and finding errors is simplified task for a program used for interpretation.

 The interpreter for the language makes it machine independent.

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

Disadvantages:

The execution of the program is slower.

Memory consumption is more.

2 Loader and Link-editor:

Once the assembler procedures an object program, that program must be placed into memory

and executed. The assembler could place the object program directly in memory and transfer

control to it, thereby causing the machine language program to be execute. This would

waste core by leaving the assembler in memory while the user’s program was being executed.

Also the programmer would have to retranslate his program with each execution, thus wasting

translation time. To over come this problems of wasted translation time and memory. System

programmers developed another component called loader

“A loader is a program that places programs into memory and prepares them for

execution.” It would be more efficient if subroutines could be translated into object form the loader

could”relocate” directly behind the user’s program. The task of adjusting programs o they may be

placed in arbitrary core locations is called relocation. Relocation loaders perform four functions.

1.6 TRANSLATOR

A translator is a program that takes as input a program written in one language and

produces as output a program in another language. Beside program translation, the translator

performs another very important role, the error-detection. Any violation of d HLL specification

would be detected and reported to the programmers. Important role of translator are:

1 Translating the hll program input into an equivalent ml program.

2 Providing diagnostic messages wherever the programmer violates specification of

the hll.

1.7 TYPE OF TRANSLATORS:-

 INTERPRETOR

COMPILER

 PREPROSSESSOR

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

1.8 LIST OF COMPILERS

1. Ada compilers

2 .ALGOL compilers

3 .BASIC compilers

4 .C# compilers

5 .C compilers

6 .C++ compilers

7 .COBOL compilers

8 .D compilers

9 .Common Lisp compilers

10. ECMAScript interpreters

11. Eiffel compilers

12. Felix compilers

13. Fortran compilers

14. Haskell compilers 15

.Java compilers

16. Pascal compilers

17. PL/I compilers

18. Python compilers

19. Scheme compilers

20. Smalltalk compilers

21. CIL compilers

1.9 STRUCTURE OF THE COMPILER DESIGN

Phases of a compiler: A compiler operates in phases. A phase is a logically interrelated operation

that takes source program in one representation and produces output in another representation. The

phases of a compiler are shown in below

There are two phases of compilation.

a. Analysis (Machine Independent/Language Dependent)

b. Synthesis(Machine Dependent/Language independent) Compilation

process is partitioned into no-of-sub processes called ‘phases’.

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

Lexical Analysis:-

LA or Scanners reads the source program one character at a time, carving the source

program into a sequence of automic units called tokens.

Syntax Analysis:-

The second stage of translation is called Syntax analysis or parsing. In this phase

expressions, statements, declarations etc… are identified by using the results of lexical analysis.

Syntax analysis is aided by using techniques based on formal grammar of the programming

language.

Intermediate Code Generations:-

An intermediate representation of the final machine language code is produced.

This phase bridges the analysis and synthesis phases of translation.

Code Optimization :-

This is optional phase described to improve the intermediate code so that the output

runs faster and takes less space.

Code Generation:-

The last phase of translation is code generation. A number of optimizations to reduce

the length of machine language program are carried out during this phase. The output of the code

generator is the machine language program of the specified computer.

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

Table Management (or) Book-keeping:-

This is the portion to keep the names used by the program and records essential information about each.

The data structure used to record this information called a ‘Symbol Table’

.

Error Handlers:-

It is invoked when a flaw error in the source program is detected.

The output of LA is a stream of tokens, which is passed to the next phase, the syntax

analyzer or parser. The SA groups the tokens together into syntactic structure called as expression.

Expression may further be combined to form statements. The syntactic structure can be regarded as

a tree whose leaves are the token called as parse trees.

The parser has two functions. It checks if the tokens from lexical analyzer, occur in

pattern that are permitted by the specification for the source language. It also imposes on tokens a

tree-like structure that is used by the sub-sequent phases of the compiler.

Example, if a program contains the expression A+/B after lexical analysis this

expression might appear to the syntax analyzer as the token sequence id+/id. On seeing the /, the

syntax analyzer should detect an error situation, because the presence of these two adjacent binary

operators violates the formulations rule of an expression.

Syntax analysis is to make explicit the hierarchical structure of the incoming token

stream by identifying which parts of the token stream should be grouped.

Example, (A/B*C has two possible interpretations.) 1,

divide A by B and then multiply by C or

2, multiply B by C and then use the result to divide A.

each of these two interpretations can be represented in terms of a parse tree.

Intermediate Code Generation:-

The intermediate code generation uses the structure produced by the syntax analyzer

to create a stream of simple instructions. Many styles of intermediate code are possible. One

common style uses instruction with one operator and a small number of operands.

The output of the syntax analyzer is some representation of a parse tree. the

intermediate code generation phase transforms this parse tree into an intermediate language

representation of the source program.

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

Code Optimization

This is optional phase described to improve the intermediate code so that the output

runs faster and takes less space. Its output is another intermediate code program that does the some

job as the original, but in a way that saves time and / or spaces.

1, Local Optimization:-

There are local transformations that can be applied to a program to make an

improvement. For example,

If A > B goto L2

 Goto L3

L2 :

This can be replaced by a single statement

If A < B goto L3

Another important local optimization is the elimination of common sub-

expressions

A := B + C + D E :=

B + C + F

Might be evaluated as

T1 := B + C

A := T1 + D E :=

T1 + F

Take this advantage of the common sub-expressions B + C.

2, Loop Optimization:-

Another important source of optimization concerns about increasing the

speed of loops. A typical loop improvement is to move a computation that

produces the same result each time around the loop to a point, in the program

just before the loop is entered.

Code generator :-

Cg produces the object code by deciding on the memory locations for data, selecting

code to access each datum and selecting the registers in which each computation is to be done.

Many computers have only a few high speed registers in which computations can be performed

quickly. A good code generator would attempt to utilize registers as efficiently as possible.

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

Table Management OR Book-keeping :-

A compiler needs to collect information about all the data objects that appear in the

source program. The information about data objects is collected by the early phases of the compiler-

lexical and syntactic analyzers. The data structure used to record this information is called as

Symbol Table.

Error Handing :-

One of the most important functions of a compiler is the detection and reporting of

errors in the source program. The error message should allow the programmer to determine exactly

where the errors have occurred. Errors may occur in all or the phases of a compiler.

Whenever a phase of the compiler discovers an error, it must report the error to the

error handler, which issues an appropriate diagnostic msg. Both of the table-management and error-

Handling routines interact with all phases of the compiler.

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

Intermediate Code Generator

Lexical Analyzer

Semantic Analyzer

Example:
Position:= initial + rate *60

Tokens id1 = id2 + id3 * id4

 =

 id1 +

 id2 *

 id3 id4

 =

 id1 +

 id2 *

 id3 60

 int to real

temp1:= int to real (60) temp2:= id3 * temp1

temp3:= id2 + temp2

id1:= temp3.

Te Id1:= id2 +temp1

Code Optimizer

Syntsx Analyzer

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

Code Generator

MOVF id3, r2 MULF

 *60.0, r2

MOVF id2, r2 ADDF

 r2, r1 MOVF

 r1, id1

1.10 TOKEN

LA reads the source program one character at a time, carving the source program into a

sequence of automatic units called ‘Tokens’.

1, Type of the token.

2, Value of the token.

Type : variable, operator, keyword, constant

Value : N1ame of variable, current variable (or) pointer to symbol table.

If the symbols given in the standard format the LA accepts and produces token

as output. Each token is a sub-string of the program that is to be treated as a single unit. Token are

two types.

1, Specific strings such as IF (or) semicolon.

2, Classes of string such as identifiers, label, constants.

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

LEXICAL ANALYSIS

2.1 OVER VIEW OF LEXICAL ANALYSIS

o To identify the tokens we need some method of describing the possible tokens that can

appear in the input stream. For this purpose we introduce regular expression, a notation that

can be used to describe essentially all the tokens of programming language.

o Secondly , having decided what the tokens are, we need some mechanism to recognize

these in the input stream. This is done by the token recognizers, which are designed using

transition diagrams and finite automata.

2.2 ROLE OF LEXICAL ANALYZER

the LA is the first phase of a compiler. It main task is to read the input character and

produce as output a sequence of tokens that the parser uses for syntax analysis.

Upon receiving a ‘get next token’ command form the parser, the lexical analyzer reads the

input character until it can identify the next token. The LA return to the parser representation for the

token it has found. The representation will be an integer code, if the token is a simple construct such

as parenthesis, comma or colon.

LA may also perform certain secondary tasks as the user interface. One such task is

striping out from the source program the commands and white spaces in the form of blank, tab and

new line characters. Another is correlating error message from the compiler with the source

program.

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

2.3 LEXICAL ANALYSIS VS PARSING:

Lexical analysis Parsing

A Scanner simply turns an input String (say a

file) into a list of tokens. These tokens represent

things like identifiers, parentheses, operators etc.

The lexical analyzer (the "lexer") parses

individual symbols from the source code file into

tokens. From there, the "parser" proper turns

those whole tokens into sentences of

your grammar

A parser converts this list of tokens into a Tree-

like object to represent how the tokens fit

together to form a cohesive whole (sometimes

referred to as a sentence).

A parser does not give the nodes any meaning

beyond structural cohesion. The next thing to do

is extract meaning from this structure (sometimes

called contextual

analysis).

2.4 TOKEN, LEXEME, PATTERN:

Token: Token is a sequence of characters that can be treated as a single logical entity. Typical

tokens are,

1) Identifiers 2) keywords 3) operators 4) special symbols 5)constants

Pattern: A set of strings in the input for which the same token is produced as output. This set of

strings is described by a rule called a pattern associated with the token.

Lexeme: A lexeme is a sequence of characters in the source program that is matched by the pattern

for a token.

Example:

Description of token

Token lexeme pattern

const const const

if if If

relation <,<=,= ,< >,>=,> < or <= or = or < > or >= or letter

followed by letters & digit

i pi any numeric constant

nun 3.14 any character b/w “and “except"

literal "core" pattern

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

A patter is a rule describing the set of lexemes that can represent a particular token in source program.

2.5 LEXICAL ERRORS:

Lexical errors are the errors thrown by your lexer when unable to continue. Which means that

there's no way to recognise a lexeme as a valid token for you lexer. Syntax errors, on the other side,

will be thrown by your scanner when a given set of already recognised valid tokens don't match

any of the right sides of your grammar rules. simple panic-mode error handling system requires

that we return to a high-level parsing function when a parsing or lexical error is detected.

Error-recovery actions are:

i. Delete one character from the remaining input.

ii. Insert a missing character in to the remaining input.

iii. Replace a character by another character.

iv. Transpose two adjacent characters.

2.6 DIFFERENCE BETWEEN COMPILER AND INTERPRETER

 A compiler converts the high level instruction into machine language while an interpreter

converts the high level instruction into an intermediate form.

 Before execution, entire program is executed by the compiler whereas after translating the

first line, an interpreter then executes it and so on.

 List of errors is created by the compiler after the compilation process while an interpreter

stops translating after the first error.

 An independent executable file is created by the compiler whereas interpreter is required by

an interpreted program each time.

The compiler produce object code whereas interpreter does not produce object code. In the

process of compilation the program is analyzed only once and then the code is generated

whereas source program is interpreted every time it is to be executed and every time the

source program is analyzed. hence interpreter is less efficient than compiler.

 Examples of interpreter: A UPS Debugger is basically a graphical source level debugger

but it contains built in C interpreter which can handle multiple source files. example of

compiler: Borland c compiler or Turbo C compiler compiles the programs written in C or

C++.

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

2.7 REGULAR EXPRESSIONS

Regular expression is a formula that describes a possible set of string.

Component of regular expression..

X the character x

. any character, usually accept a new line [x y

z] any of the characters x, y, z, …..

R? a R or nothing (=optionally as R)

R* zero or more occurrences…..

R+ one or more occurrences ……

R1R2 an R1 followed by an R2 R2R1

 either an R1 or an R2.

A token is either a single string or one of a collection of strings of a certain type. If we view the set

of strings in each token class as an language, we can use the regular-expression notation to describe

tokens.

Consider an identifier, which is defined to be a letter followed by zero or more letters or

digits. In regular expression notation we would write.

Identifier = letter (letter | digit)*

Here are the rules that define the regular expression over alphabet .

o is a regular expression denoting { € }, that is, the language containing only the empty

string.

o For each ‘a’ in ∑, is a regular expression denoting { a }, the language with only one

string consisting of the single symbol ‘a’ .

o If R and S are regular expressions, then

(R) | (S) means LrULs

R.S means Lr.Ls R*

denotes Lr*

2.8 REGULAR DEFINITIONS

For notational convenience, we may wish to give names to regular expressions and to

define regular expressions using these names as if they were symbols.

Identifiers are the set or string of letters and digits beginning with a letter. The following

regular definition provides a precise specification for this class of string.

Example-1,

Ab*|cd? Is equivalent to (a(b*)) | (c(d?))

Pascal identifier

Letter - A | B | ……| Z | a | b |……| z| Digits

- 0 | 1 | 2 | …. | 9

Id - letter (letter / digit)*

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

Recognition of tokens:

We learn how to express pattern using regular expressions. Now, we must study how to take the

patterns for all the needed tokens and build a piece of code that examins the input string and

finds a prefix that is a lexeme matching one of the patterns.

 stmt

| If expr then else stmt

| є

| term Term

|number

For relop ,we use the comparison operations of languages like Pascal or SQL where = is “equals”

and < > is “not equals” because it presents an interesting structure of lexemes.

The terminal of grammar, which are if, then , else, relop ,id and numbers are the names of tokens

as far as the lexical analyzer is concerned, the patterns for the tokens are described using regular

definitions.

digit -->[0,9]

digits -->digit+

number -->digit(.digit)?(e.[+-]?digits)? letter

 -->[A-Z,a-z]

id -->letter(letter/digit)*

if --> if

then -->then

else -->else

relop --></>/<=/>=/==/< >

In addition, we assign the lexical analyzer the job stripping out white space, by recognizing the

“token” we defined by:
+

Here, blank, tab and newline are abstract symbols that we use to express the ASCII characters of

the same names. Token ws is different from the other tokens in that ,when we recognize it, we do

not return it to parser ,but rather restart the lexical analysis from the character that follows the

white space . It is the following token that gets returned to the parser.

Lexeme Token Name Attribute Value

Any ws _ _

if if _

then then _

else else _

Any id id pointer to table entry

Any number number Pointer to table entry

< relop LT

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

<= relop LE

= relop ET

< > relop NE

2.9 TRANSITION DIAGRAM:

Transition Diagram has a collection of nodes or circles, called states. Each state represents

a condition that could occur during the process of scanning the input looking for a lexeme that

matches one of several patterns .

Edges are directed from one state of the transition diagram to another. each edge is labeled by a

symbol or set of symbols.

If we are in one state s, and the next input symbol is a, we look for an edge out of state s labeled by

a. if we find such an edge ,we advance the forward pointer and enter the state

of the transition diagram to which that edge leads.

Some important conventions about transition diagrams are

1. Certain states are said to be accepting or final .These states indicates that a lexeme has been

found, although the actual lexeme may not consist of all positions b/w the lexeme Begin and

forward pointers we always indicate an accepting state by a double circle.

2. In addition, if it is necessary to return the forward pointer one position, then we shall

additionally place a * near that accepting state.

3. One state is designed the state ,or initial state ., it is indicated by an edge labeled “start”

entering from nowhere .the transition diagram always begins in the state before any input symbols

have been used.

As an intermediate step in the construction of a LA, we first produce a stylized flowchart,

called a transition diagram. Position in a transition diagram, are drawn as circles and are called as

states.

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

The above TD for an identifier, defined to be a letter followed by any no of letters or

digits.A sequence of transition diagram can be converted into program to look for the tokens

specified by the diagrams. Each state gets a segment of code.

2.10 AUTOMATA

If = if

Then = then

Else = else

Relop = < | <= | = | > | >=

Id = letter (letter | digit) *|

Num = digit |

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

 An automation is defined as a system where information is transmitted and used for performing some

functions without direct participation of man.

1, an automation in which the output depends only on the input is called an automation

 without memory.

2, an automation in which the output depends on the input and state also is called as automation

with memory.

3, an automation in which the output depends only on the state of the machine is

called a Moore machine.

3, an automation in which the output depends on the state and input at any instant of time is

called a mealy machine.

2.11 DESCRIPTION OF AUTOMATA

1, an automata has a mechanism to read input from input tape,

2, any language is recognized by some automation, Hence these automation are basically

language ‘acceptors’ or ‘language recognizers’.

Types of Finite Automata

Deterministic Automata

 Non-Deterministic Automata.

2.12 DETERMINISTIC AUTOMATA

A deterministic finite automata has at most one transition from each state on any input. A

DFA is a special case of a NFA in which:-

1, it has no transitions on input € ,

2, each input symbol has at most one transition from any state.

DFA formally defined by 5 tuple notation M = (Q, ∑, δ, qo, F), where Q is

a finite ‘set of states’, which is non empty.

∑ is ‘input alphabets’, indicates input set.

qo is an ‘initial state’ and qo is in Q ie, qo, ∑, Q F is a

set of ‘Final states’,

δ is a ‘transmission function’ or mapping function, using this function the next

state can be determined.

The regular expression is converted into minimized DFA by the following procedure:

Regular expression → NFA → DFA → Minimized DFA

The Finite Automata is called DFA if there is only one path for a specific input from

current state to next state.

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

a

From state S0 for input ‘a’ there is only one path going to S2. similarly from S0 there is

only one path for input going to S1.

2.13 NONDETERMINISTIC AUTOMATA

 A NFA is a mathematical model that consists of

 A set of states S.

 A set of input symbols ∑.

 A transition for move from one state to an other.

 A state so that is distinguished as the start (or initial) state.

 A set of states F distinguished as accepting (or final) state.

 A number of transition to a single symbol.

 A NFA can be diagrammatically represented by a labeled directed graph, called a

transition graph, In which the nodes are the states and the labeled edges represent the

transition function.

 This graph looks like a transition diagram, but the same character can label two or more

transitions out of one state and edges can be labeled by the special symbol € as well as

by input symbols.

 The transition graph for an NFA that recognizes the language (a | b) * abb is shown

S1

So
a

S2

b

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

2.14 DEFINITION OF CFG

It involves four quantities.

CFG contain terminals, N-T, start symbol and production.

 Terminal are basic symbols form which string are formed.

 N-terminals are synthetic variables that denote sets of strings

 In a Grammar, one N-T are distinguished as the start symbol, and the set of string it

denotes is the language defined by the grammar.

 The production of the grammar specify the manor in which the terminal and N-T

can be combined to form strings.

 Each production consists of a N-T, followed by an arrow, followed by a string of

one terminal and terminals.

2.15 DEFINITION OF SYMBOL TABLE

 An extensible array of records.

 The identifier and the associated records contains collected information about the

identifier.

FUNCTION identify (Identifier name)

RETURNING a pointer to identifier information contains

The actual string

 A macro definition A

keyword definition

 A list of type, variable & function definition A

list of structure and union name definition

 A list of structure and union field selected definitions

2.16 Creating a lexical analyzer with Lex

2.17 Lex specifications:

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

A Lex program (the .l file) consists of three parts:

declarations

%%

translation rules

%%

auxiliary procedures

1. The declarations section includes declarations of variables,manifest constants(A manifest

constant is an identifier that is declared to represent a constant e.g. # define PIE 3.14), and

regular definitions.

2. The translation rules of a Lex program are statements of the form :

p1 {action 1}

p2 {action 2}

p3 {action 3}

… …

… …

where each p is a regular expression and each action is a program fragment describing what

action the lexical analyzer should take when a pattern p matches a lexeme. In Lex the actions

are written in C.

3. The third section holds whatever auxiliary procedures are needed by the actions.Alternatively

these procedures can be compiled separately and loaded with the lexical analyzer.

Note: You can refer to a sample lex program given in page no. 109 of chapter 3 of the book:

Compilers: Principles, Techniques, and Tools by Aho, Sethi & Ullman for more clarity.

2.18 INPUT BUFFERING

The LA scans the characters of the source pgm one at a time to discover tokens. Because

of large amount of time can be consumed scanning characters, specialized buffering techniques

have been developed to reduce the amount of overhead required to process an input character.

Buffering techniques:

1. Buffer pairs

2. Sentinels

The lexical analyzer scans the characters of the source program one a t a time to discover tokens.

Often, however, many characters beyond the next token many have to be examined before the next

token itself can be determined. For this and other reasons, it is desirable for thelexical analyzer to

 Compiler Final Year Computer Engineering(SPPU)

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4 Prepared by – Prof. Anand N. Gharu

read its input from an input buffer. Figure shows a buffer divided into two haves of, say 100

characters each. One pointer marks the beginning of the token being discovered. A look ahead

pointer scans ahead of the beginning point, until the token is discovered .we view the position of

each pointer as being between the character last read and thecharacter next to be read. In practice

each buffering scheme adopts one convention either apointer is at the symbol last read or the

symbol it is ready to read.

Token beginnings look ahead pointerThe distance which the lookahead pointer may have to travel past the actual token

may belarge. For example, in a PL/I program we may see: DECALRE (ARG1, ARG2… ARG n) Without knowing

whether DECLARE is a keyword or an array name until we see the character that follows the right parenthesis. In either

case, the token itself ends at the second E. If the look ahead pointer travels beyond the buffer half in which it began, the

other half must be loaded with the next characters from the source file. Since the buffer shown in above figure is of

limited size there is an implied constraint on how much look ahead can be used before the next token is discovered. In

the above example, ifthe look ahead traveled to the left half and all the way through the left half to the middle, we could

not reload the right half, because we would lose characters that had not yet been groupedinto tokens. While we can make

the buffer larger if we chose or use another buffering scheme,we cannot ignore the fact that overhead is limited.

TEXT BOOKS:

1. Compilers, Principles Techniques and Tools- Alfred V Aho, Monical S Lam, Ravi Sethi,

Jeffrey D. Ullman,2
nd

 ed, Pearson,2007.

2. Principles of compiler design, V. Raghavan, 2
nd

 ed, TMH, 2011.

3. Principles of compiler design, 2
nd

 ed, Nandini Prasad, Elsevier

REFERENCE BOOKS:

1. http://www.nptel.iitm.ac.in/downloads/106108052/

2. Compiler construction, Principles and Practice, Kenneth C Louden, CENGAGE

3. Implementations of Compiler, A new approach to Compilers including the algebraic

methods, Yunlinsu, SPRINGER

http://www.nptel.iitm.ac.in/downloads/106108052/

