
System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 1

UNIT – I

Introduction: Components of System Software: Text editors, Loaders, Assemblers, Macro

processors, Compilers, Debuggers. Machine Structure, Machine language and Assembly

Language. Assemblers: General design procedure, design of two pass assembler

1. INTRODUCTION :

System programming involves designing and writing computer programs that allow the

computer hardware to interface with the programmer and the user, leading to the effective

execution of application software on the computer system. Typical system programs

include the operating system and firmware, programming tools such as compilers,

assemblers, I/O routines, interpreters, scheduler, loaders and linkers as well as the

runtime libraries of the computer programming languages.

2. Component of System Software :

System software is a type of computer program that is designed to run a computer's

hardware and application programs. If we think of the computer system as a layered

model, the system software is the interface between the hardware and user applications

Components are :

 Text editors

 Loaders

 Assemblers

 Macro processors

 Compilers

 Debuggers

 Machine Structure

 Machine language and Assembly Language.

i. Text Editor :

A text editor is a type of program used for editing plain text files. Such programs are

sometimes known as "notepad" software, following the Microsoft Notepad.

ii. Loaders :

a loader is the part of an operating system that is responsible for

loading programs and libraries. It is one of the essential stages in the process of

starting a program, as it places programs into memory and prepares them for

execution. Loading a program involves reading the contents of the executable

file containing the program instructions into memory, and then carrying out other

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Microsoft_Notepad
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Executable

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 2

required preparatory tasks to prepare the executable for running. Once loading is

complete, the operating system starts the program by passing control to the loaded

program code.

iii. Linkers :

Linker is a program that takes one or more objects generated by a compiler and

combines them into a single executable program. Loader is the part of an

operating system that is responsible for loading programs from executables (i.e.,

executable files) into memory, preparing them for execution and then executing them.

iv. Assembler :

Assembler is a computer program which is used to translate program written in

Assembly Language in to machine language. The translated program is called as

object program. Assembler checks each instruction for its correctness and generates

diagnostic messages, if there are mistakes in the program. Various steps of

assembling are:

1. Input source program in Assembly Language through an input device.

2. Use Assembler to produce object program in machine language.

3. Execute the program.

v. Compiler :

A compiler is a program that translates a programme written in HLL to executable

machine language. The process of transferring HLL source program in to object code

is a lengthy and complex process as compared to assembling. Compliers have

diagnostic capabilities and prompt the programmer with appropriate error message

while compiling a HLL program. The corrections are to be incorporated in the

program, whenever needed, and the program has to be recompiled. The process is

repeated until the program is mistake free and translated to an object code. Thus the

job of a complier includes the following:

1. To translate HLL source program to machine codes.

2. To trace variables in the program

3. To include linkage for subroutines.

4. To allocate memory for storage of program and variables.

5. To generate error messages, if there are errors in the program.

vi. Interpreter :

The basic purpose of interpreter is same as that of complier. In compiler, the program

is translated completely and directly executable version is generated. Whereas

interpreter translates each instruction, executes it and then the next instruction is

translated and this goes on until end of the program. In this case, object code is not

stored and reused. Every time the program is executed, the interpreter translates each

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 3

instruction freshly. It also has program diagnostic capabilities. However, it has some

disadvantages as below:

1. Instructions repeated in program must be translated each time they are executed.

2. Because the source program is translated fresh every time it is used, it is slow

process or execution takes more time. Approx. 20 times slower than complier.

vii. Macro Processor :

A macro processor is a program that copies a stream of text from one place to

another, making a systematic set of replacements as it does so. Macro processorsare

often embedded in other programs, such as assemblers and compilers. Sometimes

they are standalone programs that can be used to process any kind of text.

viii. Debugger :

A debugger is a computer program used by programmers to test and debug a

target program. Debuggers may use instruction-set simulators, rather than running

a program directly on the processor to achieve a higher level of control over its

execution.

ix. Machine structure :

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 4

The above structure consist of..

1. Instruction interpreter

2. Location counter

3. Instruction register

4. Working register

5. General register

The Instruction Interpreter Hardware is basically a group of circuits that perform the operation

specified by the instructions fetched from the memory.

The Location Counter can also be called as Program/Instruction Counter simply points to the

current instruction being excuted.

The working registers are often called as the "scratch pads" because they are used to store

temporary values while calculation is in progress.

This CPU interfaces with Memory through MAR & MBR

MAR (Memory Address Register) - contains address of memory location (to be read from or

stored into)

MBR (Memory Buffer Register) - contains copy of address specified by MAR

Memory controller is used to transfer data between MBR & the memory location specified by

MAR

The role of I/O Channels is to input or output information from memory.

Machine language :

Sometimes referred to as machine code or object code, machine language is a collection

of binary digits or bits that the computer reads and interprets. Machine language is the only

language a computer is capable of understanding.

The exact machine language for a program or action can differ by operating system on the

computer. The specific operating system will dictate how a compiler writes a program or action

into machine language.

Computer programs are written in one or more programming languages, like C++, Java,

or Visual Basic. A computer cannot directly understand the programming languages used to

create computer programs, so the program code must be compiled. Once a program's code is

compiled, the computer can understand it because the program's code has been turned into

machine language.

https://www.computerhope.com/jargon/b/binary.htm
https://www.computerhope.com/jargon/p/proglang.htm
https://www.computerhope.com/jargon/c/cplus.htm
https://www.computerhope.com/jargon/j/java.htm
https://www.computerhope.com/jargon/v/vb.htm
https://www.computerhope.com/jargon/c/compile.htm

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 5

Machine language example:

Below is an example of machine language (binary) for the text "Hello World".

01001000 01100101 01101100 01101100 01101111 00100000 01010111 01101111 01110010

01101100 01100100

Below is another example of machine language (non-binary), which will print the letter "A" 1000

times to the computer screen.

169 1 160 0 153 0 128 153 0 129 153 130 153 0 131 200 208 241 96

Assembly Language :

Each personal computer has a microprocessor that manages the computer's arithmetical, logical,

and control activities.

Each family of processors has its own set of instructions for handling various operations such as

getting input from keyboard, displaying information on screen and performing various other

jobs. These set of instructions are called 'machine language instructions'.

A processor understands only machine language instructions, which are strings of 1's and 0's.

However, machine language is too obscure and complex for using in software development. So,

the low-level assembly language is designed for a specific family of processors that represents

various instructions in symbolic code and a more understandable form.

Advantages of Assembly Language :

 It requires less memory and execution time;

 It allows hardware-specific complex jobs in an easier way;

 It is suitable for time-critical jobs;

 It is most suitable for writing interrupt service routines and other memory resident

programs.

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 6

SOFTWARE

A program or group of programs designed for end users.

TYPES

1. System Software
2. Application Software

DIFFERENCES BETWEEN SYSTEM SOFTWARE & APPLICATION SOFTWARE

 SYSTEM SOFTWARE APPLICATION SOFTWARE

1. It consists of low level programs that

It sits at the top of the system

software

interact with the computer at the very

because it is unable to run without

the

 basic level. operating system & system utilities.

2. It controls and coordinates the computer It is used for special and general purpose

 operations. Operations.

3. Functions:

 Programs - Word Processing

 Manages Resources - Desktop Publishing

 Controls I/O - Spreadsheets

 Communications - Databases

 - Telecommunications

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 7

 Assemblers

 Loaders

 Linkers

Language Translators :

Figure : 1

A Language Translator (FIGURE : 1) is the program which converts a users program

written in some language to another language.

- The language in which the users program is written is called the source
language.

- The language to which the source language is converted is called the target
language.

Why Language Translators ?

Computer only understands object code (machine

code). It does not understand any source code.

The Programmer writes the source code and then translator converts it in

machine readable format (object code).

Types of Language Translators: (FIGURE : 2)

4. Examples:

 OS - MS Word

 - Windows - Excel

 - Macintosh system - Lotus

 - Unix - Access

 Compilers - Dbase

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 8

Assembler :

An assembler (FIGURE : 3) is a program that takes basic computer instructions and

converts them into a pattern of bits that the computer's processor can use to perform its

basic operations

Figure : 3

Characteristics of Assembler :

Assembly language programming is

difficult Takes longer time

Takes longer to

debug Difficult to

maintain

Compiler :

 Complier (Figure : 4) is a system program that translates an input program in a

high level language into its machine language equivalent

 Figure : 4

High Level Language Features :

High degree of machine

independence Good data

structures

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 9

Improved debugging

capability Good

documentation

Need of assembly language programming?

1. Performance issues

For some applications, speed and size of the code are critical. An expert

assembly language programmer can often produce code that is much smaller

and much faster than a high level programmer can. Example – embedded

applications such as the code on a smart card, the code in a cellular telephone,

BIOS routines, inner loops of performance critical applications etc.

2. Access to the machine

Some procedures need complete access to the hardware, something which is

impossible in high level languages.

Example – Low levels interrupts and traps handlers in an operating system etc.

Loader : It is the part of the operating system (a system software) that is responsible for

loading programs from secondary storage devices into memory, preparing them for

execution and then executing them.

Linker : (FIGURE : 5)

- A large program can be splitted up into many modules. All these modules have

to be connected logically and linked to form a single program.

 Figure 5

Elements of Assembly Language

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 10

An assembly language programming provides three basic features which simplify

programming when compared to machine language.

1. Mnemonic Operation Codes :

Mnemonic operation code / Mnemonic Opcodes for machine instruction

eliminates the need to memorize numeric operation codes. It enables assembler

to provide helpful error diagnostics. Such as indication of misspelt operation

codes.

2. Symbolic Operands :

Symbolic names can be associated with data or instructions. These

symbolic names can be used as operands in assembly statements. The

assembeler performes memory bindinding to these names; the programmer need

not know any details of the memory bindings performed by the assembler.

3. Data declarations :

Data can be declared in a variety of notations, including the decimal

notation. This avoids manual conversion of constants into their internal machine

representation, for example -5 into (11111010)2 or 10.5 into (41A80000)16

Statement format :

An assembly language statement has the following format :

[Label] <Opcode> <operand Spec> [, operand Spec> ..]

Mnemonic Operation Codes :

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 11

Instruction Format :

Sign is not a part of Instruction

An Assembly and equivalent machine language program :

Assembly Language Statements :

Three Kinds of Statements

1. Imperative Statements
2. Declaration Statements
3. Assembler Directives

a) Imperative Statements : It indicates an action to be performed during the

execution of the assembled program. Each imperative statement typically

translates into one machine instruction.

b) Declaration Statements : Two types of declaration statements is as follows

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 12

 [Lable] DS <Constant>

 [Label] DC <Value>

The DS (Declare Storage) statement reserves areas of memory and associates names with them.

 E.g. A DS 1

 B DS 150

First statement reserves a memory of 1 word and associates the name of the memory

as A.

Second statement reserves a memory of 150 word and associates the name of the

memory as B.

The DC (Declare Constant) Statement constructs memory word containing constants

 e.g. ONE DC ‘1’

Associates the name ONE with a memory word containing the value ‘1’ . The

programmer can declare constants in decimal,binary, hexadecimal forms etc., These

values are not protected by the assembler. In the above assembly language program

the value of ONE Can be changed by executing an instruction MOVEM BREG,ONE

c. Assembler Directives :

Assembler directives instruct the assembler to perform certain actions during the

assembly of a program. Some Assembler directives are described in the following

START <Constant>

Indicates that the first word of the target program generated by the assembler

should be placed in the memory word with address <Constant>

END [<operand spec>]

It Indicates the end of the source program

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 13

Pass Structure of Assembler :

One complete scan of the source program is known as a pass of a Language

Processor.

Two types 1) Single Pass Assembler 2) Two Pass Assembler.

Single Pass Assembler :

First type to be

developed Most

Primitive

Source code is processed only once.

The operand field of an instruction containing forward reference is left blank intially

Eg) MOVER BREG,ONE

Can be only partially synthesized since ONE is a forward reference

During the scan of the source program, all the symbols will be stored in a table called

SYMBOL TABLE. Symbol table consists of two important fields, they are symbol name

and address.

All the statements describing forward references will be stored in a table called

Table of Incompleted Instructions (TII)

TII (Table of Incomplete instructions)

Instruction Address Symbol

101 ONE

By the time the END statement is processed the symbol table would contain

the address of all symbols defined in the source program

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 14

Two Pass Assembler :

Can handle forward reference problem easily.

First Phase : (Analysis)

 Symbols are entered in the table called Symbol table

 Mnemonics and the corresponding opcodes are stored in a table called
Mnemonic table

 LC Processing

Second Phase : (Synthesis)

 Synthesis the target form using the address information found in Symbol
table.

 First pass constructs an Intermediated Representation (IR) of the source

program for use by the second pass.

Data Structure used during Synthesis Phase :

1. Symbol table

2. Mnemonics table

Processed form of the source program called Intermediate Code (IC)

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 15

ADVANCED ASSEMBLER DIRECTIVES

1. ORIGIN
2. EQU
3. LTROG

ORIGIN :

Syntax : ORIGIN < address spec>

< address spec>can be an <operand spec> or constant

Indicates that Location counter should be set to the address given by < address

spec>

This statement is useful when the target program does not consist of

consecutive memory words.

Eg) ORIGIN Loop + 2

EQU :

Syntax

<symbol> EQU <address spec>

<address spec>operand spec (or) constant

Simply associates the name symbol with address

specification No Location counter processing is implied

Eg) Back EQU Loop

LTORG : (Literal Origin)

Where should the assembler place literals ?

It should be placed such that the control never reaches it during the

execution of a program.

By default, the assembler places the literals after the END statement.

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 16

LTROG statement permits a programmer to specify where literals should be placed.

DESIGN OF TWO PASS ASSEMBLER:

Pass I : (Analysis of Source Program)

1) Separate the symbol, mnemonic opcode and operand fields

2) Build the symbol table.

3) Perform LC processing.

4) Construct intermediate representation

PASS 2:-

Processes the intermediate representation (IR) to synthesize the target program.

Pass 1 of the Assembler:-

Pass 1 uses the following data structures:-

OPTAB: - A table of mnemonic opcodes and related info.

SYMTAB: - Symbol Table.

LITTAB: - A table of literals used in the program.

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 17

OPTAB :

contains the fields mnemonic opcode, class and mnemonic information.

The ‘class’ field indicates whether the opcode corresponds to an imperative

statement (IS), a declaration statement (DL) or an assembler directive (AD).

If an imperative statement is present, then the mnemonic info field contains the

pair (machine opcode, instruction length) else it contains the pair id of a routine

to handle the declaration or directive statement.

SYMTAB :

contains the fields address and length.

The processing of an assembly statement begins with the processing of its label field. If

it contains a symbol, the symbol and the value in LC is copied into a new entry of

SYMTAB.

If it is an imperative statement, then length of the machine instruction is simply

added to the LC. The length is also entered into the symbol table

LITTAB :

The LITTAB is used to collect all literals used in the program.

The awareness of different literals pools in maintained by an auxiliary table

POOLTAB.

POOLTAB :

This table contains the literal no. of starting literal of each literal pool.

The detailed design of pass1 assembler and pass2 assembler are explained in

detail with the flowcharts.

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 18

Pass 1:

Input:Source program

Output:Intermediate code

Pass 2:

Input:Intermediate code

Output:object code

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 19

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 20

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 21

The output of pass 1 assembler is intermediate code(IR)

The output of pass 2 assembler is machine code.

Intermdeiate Code Forms :

Consists of a set of (IC) units. Each unit consisting of the following three fields.

1. Address
2. Mnemonic Opcode
3. Operands

Mnemonic Opcode :

This field consists of the form (Statement Class,Code)

Statement class can be an

1. Imperative Statement (IS)
2. Declaration Statement (DL)
3. Assembler Statement (AD)

Code :

1. DC01
2. DS02

AD

1. Start01
2. END02
3. ORIGIN03
4. EQU04
5. LTORG05

For IS, the code will be mnemonic opcode

There are two variants of intermediate code which differs in the information contained in

their operand fields.

 Mnemonic

Address Opcode Operands

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 22

Variant 1

Operand Field

It can be an

1. Register operand
2. Memory operand

Register Operand (or) Conditional Code (CC)

A1 LT1

B2 LE2

C3 EQ3

D4 GT4

 GE5

 ANY6

Memory Operand

It is represented by a pair of the form (operand class,

code) Operand class can be constant (C), Literal (L),

Symbol (S)

For a constant, the code field contains the internal representation of the constant

itself.

Eg) Generate the intermediate code of the followin

program (or)

Generate the output of Pass I of the Assembly language program.

START 200

READ A

Loop MOVER AREG, A

SUB AREG, =’1’

BC GT, Loop

STOP

System Programming & Operating System TE Computer Engineering

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK-4. 23

A DS

LTOR

G

Solution :

 START 200

(AD,01)

(C,200)

 READ A (IS,09) (S,02)

Loop MOVER AREG, A (IS,04) (1) (S,01)

 SUB AREG, =’1’ (IS,02) (1) (L,01)

 BC GT, Loop (IS,07) (4) (S,01)

 STOP (IS,00)

A DS (DL,02) (C,01)

 LTORG (DL,05)

